Synthesis and SAR of thioester and thiol inhibitors of IMP-1 Metallo-β-Lactamase

Potent thioester and thiol inhibitors of IMP-1 metallo-β-lactamase have been synthesized employing a solid-phase Mitsunobu reaction as the key step.

[1]  R. Kellogg,et al.  SYNTHESIS OF (RACEMIZATION PRONE) OPTICALLY-ACTIVE THIOLS BY SN2 SUBSTITUTION USING CESIUM THIOCARBOXYLATES , 1986 .

[2]  T. Gadek,et al.  A surprising observation about Mitsunobu reactions in solid phase synthesis , 1994 .

[3]  P. Fitzgerald,et al.  Unanticipated inhibition of the metallo-beta-lactamase from Bacteroides fragilis by 4-morpholineethanesulfonic acid (MES): a crystallographic study at 1.85-A resolution. , 1998, Biochemistry.

[4]  O. Herzberg,et al.  Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. , 1996, Structure.

[5]  D. Payne,et al.  Inhibition of metallo-beta-lactamases by a series of mercaptoacetic acid thiol ester derivatives , 1997, Antimicrobial agents and chemotherapy.

[6]  J. Bermak,et al.  SOLID-PHASE SYNTHESIS OF PEPTIDYLPHOSPHONATES , 1994 .

[7]  E. Giralt,et al.  Use of Alloc-amino acids in solid-phase peptide synthesis. Tandem deprotection-coupling reactions using neutral conditions , 1997 .

[8]  N. Woodford,et al.  Carbapenem-hydrolysing IMP-1 β-lactamase in Klebsiella pneumoniae from Singapore , 1999, The Lancet.

[9]  D. Vanderwall,et al.  Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-beta-lactamase. , 1998, Chemistry & biology.

[10]  D. Livermore,et al.  Beta-lactamase-mediated resistance and opportunities for its control. , 1998, The Journal of antimicrobial chemotherapy.

[11]  J. Frère,et al.  Trifluoromethyl alcohol and ketone inhibitors of metallo-β-lactamases , 1996 .

[12]  J. Huber,et al.  The synthesis and antibacterial activity of 2-carbolinyl-carbapenems: potent anti-MRSA/MRCNS agents , 1995 .

[13]  M. Goto,et al.  Inhibition of the metallo-beta-lactamase produced from Serratia marcescens by thiol compounds. , 1997, Biological & pharmaceutical bulletin.

[14]  K. Bush,et al.  Carbapenem-hydrolyzing beta-lactamases , 1997, Antimicrobial agents and chemotherapy.

[15]  F. Guibé,et al.  New allyl group acceptors for palladium catalyzed removal of allylic protections and transacylation of allyl carbamates , 1995 .

[16]  H. Gais Synthesis of Thiol and Selenol Esters from Carboxylic Acids and Thiols or Selenols, Respectively , 1977 .

[17]  P. VolanteRalph A new, highly efficient method for the conversion of alcohols to thiolesters and thiols , 1981 .

[18]  I. Taylor,et al.  The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. , 1998, Journal of molecular biology.

[19]  Davidr . Evans,et al.  Asymmetric oxygenation of chiral imide enolates. A general approach to the synthesis of enantiomerically pure .alpha.-hydroxy carboxylic acid synthons , 1985 .

[20]  C. Thompson,et al.  High-yield expression, purification, and characterization of active, soluble Bacteroides fragilis metallo-beta-lactamase, CcrA. , 1997, Protein expression and purification.

[21]  S. Ichiyama,et al.  PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams , 1996, Journal of clinical microbiology.

[22]  Y. Arakawa,et al.  Plasmid-mediated dissemination of the metallo-beta-lactamase gene blaIMP among clinically isolated strains of Serratia marcescens , 1995, Antimicrobial agents and chemotherapy.

[23]  G. Cornaglia,et al.  Appearance of IMP-1 metallo-β-lactamase in Europe , 1999, The Lancet.