Adaptive numerical simulation of traffic flow density
暂无分享,去创建一个
Ali R. Soheili | H. R. Tareghian | A. Kerayechian | N. Davoodi | A. Kerayechian | A. Soheili | H. Tareghian | N. Davoodi
[1] Dirk Helbing,et al. MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model , 2001 .
[2] Weizhang Huang,et al. Moving mesh partial differential equations (MMPDES) based on the equidistribution principle , 1994 .
[3] Tao Tang,et al. Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..
[4] Ali R. Soheili,et al. Adaptive numerical method for Burgers-type nonlinear equations , 2012, Appl. Math. Comput..
[5] Robert D. Russell,et al. Adaptive Moving Mesh Methods , 2010 .
[6] Riccardo Fazio,et al. Moving-Mesh Methods for One-Dimensional Hyperbolic Problems Using CLAWPACK , 2003 .
[7] Weizhang Huang,et al. Analysis Of Moving Mesh Partial Differential Equations With Spatial Smoothing , 1997 .
[8] H. M. Zhang,et al. A Car-Following Theory for Multiphase Vehicular Traffic Flow , 2003 .
[9] Arthur van Dam,et al. A robust moving mesh finite volume method applied to 1D hyperbolic conservation laws from magnetohydrodynamics , 2006, J. Comput. Phys..
[10] M J Lighthill,et al. On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[11] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[12] Alexandros Sopasakis,et al. Stochastic Modeling and Simulation of Traffic Flow: Asymmetric Single Exclusion Process with Arrhenius look-ahead dynamics , 2006, SIAM J. Appl. Math..
[13] Alexandros Sopasakis. Stochastic noise approach to traffic flow modeling , 2004 .
[14] John M. Stockie,et al. A moving mesh method with variable mesh relaxation time , 2008 .
[15] Alexander Kurganov,et al. Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics , 2009, Networks Heterog. Media.
[16] E. Tadmor,et al. Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .
[17] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[18] C. Chalons,et al. Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling , 2008 .
[19] R. LeVeque. Numerical methods for conservation laws , 1990 .
[20] John M. Stockie,et al. A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws , 2000, SIAM J. Sci. Comput..
[21] H. M. Zhang. A finite difference approximation of a non-equilibrium traffic flow model , 2001 .
[22] J. Hyman,et al. An adaptive moving mesh method with static rezoning for partial differential equations , 2003 .
[23] Carlos F. Daganzo,et al. In Traffic Flow, Cellular Automata = Kinematic Waves , 2004 .