U(1) Wilson lattice gauge theories in digital quantum simulators

Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle–antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.

[1]  P. Zoller,et al.  Analog quantum simulation of (1+1)-dimensional lattice QED with trapped ions , 2016, 1604.03124.

[2]  J Casanova,et al.  Fermion-fermion scattering in quantum field theory with superconducting circuits. , 2014, Physical review letters.

[3]  Giuseppe Marmo,et al.  Discrete Abelian gauge theories for quantum simulations of QED , 2015, 1503.04340.

[4]  F. Verstraete,et al.  Matrix product states for gauge field theories. , 2013, Physical review letters.

[5]  U. Wiese Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories , 2013, 1305.1602.

[6]  Benni Reznik,et al.  Simulating compact quantum electrodynamics with ultracold atoms: probing confinement and nonperturbative effects. , 2012, Physical review letters.

[7]  H. Trotter On the product of semi-groups of operators , 1959 .

[8]  M. Bañuls,et al.  Chiral condensate in the Schwinger model with matrix product operators , 2016, 1603.05002.

[9]  M. Heyl,et al.  Dynamical quantum phase transitions in the transverse-field Ising model. , 2012, Physical review letters.

[10]  D. Rohrlich,et al.  Lattice Gauge Magnets: Local Isospin From Spin , 1990 .

[11]  A. Fetter,et al.  Ultracold Bosonic and Fermionic gases , 2012 .

[12]  H. Neven,et al.  Digitized adiabatic quantum computing with a superconducting circuit. , 2015, Nature.

[13]  T. R. Tan,et al.  Coherent diabatic ion transport and separation in a multizone trap array. , 2012, Physical review letters.

[14]  S. Montangero,et al.  Lattice gauge theory simulations in the quantum information era , 2016, 1602.03776.

[15]  Asher Peres,et al.  Stability of quantum motion in chaotic and regular systems , 1984 .

[16]  J. Kogut,et al.  Hamiltonian Formulation of Wilson's Lattice Gauge Theories , 1975 .

[17]  M. Oberthaler,et al.  Schwinger pair production with ultracold atoms , 2015, 1506.01238.

[18]  R. Brower,et al.  QCD as a quantum link model , 1997, hep-th/9704106.

[19]  Barry C. Sanders,et al.  Simulating quantum dynamics on a quantum computer , 2010, 1011.3489.

[20]  Matthew B. Hastings,et al.  Spectral Gap and Exponential Decay of Correlations , 2005 .

[21]  Series expansions for the massive Schwinger model in Hamiltonian lattice theory , 1997, hep-lat/9701015.

[22]  E. Rico,et al.  Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits. , 2015, Physical review letters.

[23]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[24]  E. Rico,et al.  Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench. , 2012, Physical review letters.

[25]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[26]  D. Horn Finite matrix models with continuous local gauge invariance , 1981 .

[27]  P. Zoller,et al.  Quantum spin-ice and dimer models with Rydberg atoms , 2014, 1404.5326.

[28]  C. Hamer,et al.  The massive Schwinger model on a lattice: Background field, chiral symmetry and the string tension , 1982 .

[29]  K. Wilson Confinement of Quarks , 1974 .

[30]  D. W. Robinson,et al.  The finite group velocity of quantum spin systems , 1972 .

[31]  Julian Schwinger,et al.  On gauge invariance and vacuum polarization , 1951 .

[32]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[33]  Benni Reznik,et al.  Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices , 2015, Reports on progress in physics. Physical Society.

[34]  B. Lanyon,et al.  Spectroscopy of Interacting Quasiparticles in Trapped Ions. , 2015, Physical review letters.

[35]  E. Wigner,et al.  About the Pauli exclusion principle , 1928 .

[36]  V. Eisler,et al.  Entanglement in the XX spin chain with an energy current (4 pages) , 2004, quant-ph/0412118.

[37]  Quantum link models: A discrete approach to gauge theories☆ , 1996, hep-lat/9609042.

[38]  M. Oberthaler,et al.  Implementing quantum electrodynamics with ultracold atomic systems , 2016, 1608.03480.

[39]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[40]  R. Barends,et al.  Digital quantum simulation of fermionic models with a superconducting circuit , 2015, Nature Communications.

[41]  P. Hänggi,et al.  Fluctuation theorems: work is not an observable. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[43]  A Walther,et al.  Controlling fast transport of cold trapped ions. , 2012, Physical review letters.

[44]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[45]  V. Kasper,et al.  Fermion production from real-time lattice gauge theory in the classical-statistical regime , 2014, 1403.4849.

[46]  Peter Zoller,et al.  Quantum Simulation of a Lattice Schwinger Model in a Chain of Trapped Ions , 2013, 1306.2162.

[47]  E. Rico,et al.  Real-time Dynamics in U(1) Lattice Gauge Theories with Tensor Networks , 2015, 1505.04440.

[48]  J. Schwinger,et al.  GAUGE INVARIANCE AND MASS. PART II. , 1962 .

[49]  C. Gattringer,et al.  Quantum Chromodynamics on the Lattice: An Introductory Presentation , 2009 .

[50]  T. Monz,et al.  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.

[51]  Alexey V. Gorshkov,et al.  Non-local propagation of correlations in quantum systems with long-range interactions , 2014, Nature.

[52]  Thomas H. Seligman,et al.  Dynamics of Loschmidt echoes and fidelity decay , 2006, quant-ph/0607050.

[53]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[54]  S. Coleman More About the Massive Schwinger Model , 1976 .

[55]  F. Verstraete,et al.  Confinement and string breaking for QED$_2$ in the Hamiltonian picture , 2015, 1509.00246.

[56]  E. Rico,et al.  Superconducting circuits for quantum simulation of dynamical gauge fields. , 2013, Physical review letters.

[57]  P. Talkner,et al.  Colloquium: Quantum fluctuation relations: Foundations and applications , 2010, 1012.2268.

[58]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[59]  B. Sanders,et al.  Quantum-circuit design for efficient simulations of many-body quantum dynamics , 2011, 1108.4318.

[60]  A. M. Fedotov,et al.  Creation of electron-positron plasma with superstrong laser field , 2013, 1312.4705.

[61]  M. Heyl Scaling and Universality at Dynamical Quantum Phase Transitions. , 2015, Physical review letters.

[62]  J. Berges,et al.  Real-time dynamics of string breaking. , 2013, Physical review letters.

[63]  E. Rico,et al.  Tensor Networks for Lattice Gauge Theories and Atomic Quantum Simulation , 2013, 1312.3127.

[64]  P. Hauke,et al.  Spread of correlations in long-range interacting quantum systems. , 2013, Physical review letters.

[65]  Horacio Casini,et al.  Remarks on entanglement entropy for gauge fields , 2013, 1312.1183.

[66]  Daniel Nigg,et al.  A quantum information processor with trapped ions , 2013, 1308.3096.

[67]  E. Solano,et al.  Deterministic Bell states and measurement of the motional state of two trapped ions , 1999 .

[68]  Tadashi Takayanagi,et al.  Holographic entanglement entropy: an overview , 2009, 0905.0932.

[69]  Aaron C. E. Lee,et al.  Many-body localization in a quantum simulator with programmable random disorder , 2015, Nature Physics.

[70]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[71]  J Casanova,et al.  Quantum simulation of quantum field theories in trapped ions. , 2011, Physical review letters.

[72]  A. Bazavov,et al.  Gauge-invariant implementation of the Abelian-Higgs model on optical lattices , 2015, 1503.08354.

[73]  E. Calzetta,et al.  Nonequilibrium quantum field theory , 2008 .

[74]  K. Jansen,et al.  The mass spectrum of the Schwinger model with matrix product states , 2013, 1305.3765.

[75]  M. Lewenstein,et al.  Synthetic magnetic fluxes and topological order in one-dimensional spin systems , 2014, 1412.6059.

[76]  M. Lewenstein,et al.  Erratum: Synthetic magnetic fluxes and topological order in one-dimensional spin systems [Phys. Rev. A 91 , 063612 (2015)] , 2015 .

[77]  M. Lewenstein,et al.  Optical Abelian Lattice Gauge Theories , 2012, 1205.0496.

[78]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[79]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[80]  ENTANGLEMENT ENTROPY AND QUANTUM FIELD THEORY: A NON-TECHNICAL INTRODUCTION , 2005, quant-ph/0505193.