GraB: Visual Saliency via Novel Graph Model and Background Priors

We propose an unsupervised bottom-up saliency detection approach by exploiting novel graph structure and background priors. The input image is represented as an undirected graph with superpixels as nodes. Feature vectors are extracted from each node to cover regional color, contrast and texture information. A novel graph model is proposed to effectively capture local and global saliency cues. To obtain more accurate saliency estimations, we optimize the saliency map by using a robust background measure. Comprehensive evaluations on benchmark datasets indicate that our algorithm universally surpasses state-of-the-art unsupervised solutions and performs favorably against supervised approaches.

[1]  Florence S. Downs,et al.  Nurture of The Nurse Scholar , 1968 .

[2]  Shi-Min Hu,et al.  Global contrast based salient region detection , 2011, CVPR 2011.

[3]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[4]  Huchuan Lu,et al.  Bayesian Saliency via Low and mid Level Cues , 2022 .

[5]  Yizhou Yu,et al.  Visual saliency based on multiscale deep features , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Huchuan Lu,et al.  Saliency Detection via Dense and Sparse Reconstruction , 2013, 2013 IEEE International Conference on Computer Vision.

[7]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[8]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Jingdong Wang,et al.  Salient Object Detection: A Discriminative Regional Feature Integration Approach , 2013, International Journal of Computer Vision.

[10]  Huchuan Lu,et al.  Saliency Detection via Absorbing Markov Chain , 2013, 2013 IEEE International Conference on Computer Vision.

[11]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[12]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Ali Borji,et al.  What is a Salient Object? A Dataset and a Baseline Model for Salient Object Detection , 2014, IEEE Transactions on Image Processing.

[14]  James M. Rehg,et al.  The Secrets of Salient Object Segmentation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Li Xu,et al.  Structure extraction from texture via relative total variation , 2012, ACM Trans. Graph..

[16]  Lihi Zelnik-Manor,et al.  What Makes a Patch Distinct? , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Paul L. Rosin A simple method for detecting salient regions , 2009, Pattern Recognit..

[18]  Peng Jiang,et al.  Salient Region Detection by UFO: Uniqueness, Focusness and Objectness , 2013, 2013 IEEE International Conference on Computer Vision.

[19]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[20]  Jian Sun,et al.  Guided Image Filtering , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Kurt Keutzer,et al.  Long term video segmentation through pixel level spectral clustering on GPUs , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[22]  Bernhard Schölkopf,et al.  Ranking on Data Manifolds , 2003, NIPS.

[23]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Shang-Hong Lai,et al.  Fusing generic objectness and visual saliency for salient object detection , 2011, 2011 International Conference on Computer Vision.

[25]  Philip H. S. Torr,et al.  Salient Object Detection and Segmentation , 2013 .

[26]  Frédo Durand,et al.  Learning to predict where humans look , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[27]  Ying Wu,et al.  A unified approach to salient object detection via low rank matrix recovery , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[29]  Yao Li,et al.  Contextual Hypergraph Modeling for Salient Object Detection , 2013, 2013 IEEE International Conference on Computer Vision.

[30]  Ming-Hsuan Yang,et al.  PatchCut: Data-driven object segmentation via local shape transfer , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Frédo Durand,et al.  A Benchmark of Computational Models of Saliency to Predict Human Fixations , 2012 .

[32]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[33]  Bernhard Hill,et al.  Comparative analysis of the quantization of color spaces on the basis of the CIELAB color-difference formula , 1997, TOGS.

[34]  Jian Sun,et al.  Saliency Optimization from Robust Background Detection , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Li Xu,et al.  Hierarchical Saliency Detection , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Vincenzo Verardi Robust principal component analysis in Stata , 2009 .

[37]  Huchuan Lu,et al.  Saliency Detection via Graph-Based Manifold Ranking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Jian Sun,et al.  Geodesic Saliency Using Background Priors , 2012, ECCV.

[39]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[40]  David Dagan Feng,et al.  Robust saliency detection via regularized random walks ranking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  G. Alonso Segmentación de Imágenes con Algoritmos de Agrupamiento Utilizando la Base de Datos BSDS500 "The Berkeley Segmentation Dataset and Benchmark , 2016 .