Expert Systems and Probabilistic Network Models

Artificial intelligence and expert systems have seen a great deal of research in recent years, much of which has been devoted to methods for incorporating uncertainty into models. This book is devoted to providing a thorough and up-to-date survey of this field for researchers and students.

[1]  M. Kendall Probability and Statistical Inference , 1956, Nature.

[2]  Allen Newell,et al.  Chess-Playing Programs and the Problem of Complexity , 1958, IBM J. Res. Dev..

[3]  Cedric A. B. Smith,et al.  Consistency in Statistical Inference and Decision , 1961 .

[4]  G. Dirac On rigid circuit graphs , 1961 .

[5]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[6]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[7]  M. Degroot Optimal Statistical Decisions , 1970 .

[8]  Fanica Gavril,et al.  Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum Independent Set of a Chordal Graph , 1972, SIAM J. Comput..

[9]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[10]  H. Akaike A new look at the statistical model identification , 1974 .

[11]  Fanica Gavril,et al.  An Algorithm for Testing Chordality of Graphs , 1975, Inf. Process. Lett..

[12]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[13]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[14]  Bruce G. Buchanan,et al.  Meta-Level Knowledge: Overview and Applications , 1977, IJCAI.

[15]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[16]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[17]  Roger C. Schank,et al.  Scripts, plans, goals and understanding: an inquiry into human knowledge structures , 1978 .

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[19]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[20]  A. Dawid Conditional Independence for Statistical Operations , 1980 .

[21]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[22]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[23]  Avron Barr,et al.  The Handbook of Artificial Intelligence, Volume 1 , 1982 .

[24]  V. Isham An Introduction to Spatial Point Processes and Markov Random Fields , 1981 .

[25]  Richard O. Duda,et al.  Subjective bayesian methods for rule-based inference systems , 1976, AFIPS '76.

[26]  John Gaschnig,et al.  MODEL DESIGN IN THE PROSPECTOR CONSULTANT SYSTEM FOR MINERAL EXPLORATION , 1981 .

[27]  C. Roads,et al.  The Handbook of Artificial Intelligence, Volume 1 , 1982 .

[28]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .

[29]  JORMA RISSANEN,et al.  A universal data compression system , 1983, IEEE Trans. Inf. Theory.

[30]  N. Wermuth,et al.  Graphical and recursive models for contingency tables , 1983 .

[31]  Catriel Beeri,et al.  On the Desirability of Acyclic Database Schemes , 1983, JACM.

[32]  Chris Naylor Build your own expert system , 1983 .

[33]  Balakrishnan Chandrasekaran,et al.  On evaluating ai systems for medical diagnosis , 1989 .

[34]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[35]  William J. Clancey,et al.  The Epistemology of a Rule-Based Expert System - A Framework for Explanation , 1981, Artif. Intell..

[36]  L. Zadeh The role of fuzzy logic in the management of uncertainty in expert systems , 1983 .

[37]  Judea Pearl,et al.  A Computational Model for Causal and Diagnostic Reasoning in Inference Systems , 1983, IJCAI.

[38]  G. L. Simons Introducing Artificial Intelligence , 1984 .

[39]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[40]  Gregory F. Cooper,et al.  NESTOR: A Computer-Based Medical Diagnostic Aid That Integrates Causal and Probabilistic Knowledge. , 1984 .

[41]  Casimir A. Kulikowski,et al.  A Practical Guide to Designing Expert Systems , 1984 .

[42]  Edward H. Shortliffe,et al.  Rule Based Expert Systems: The Mycin Experiments of the Stanford Heuristic Programming Project (The Addison-Wesley series in artificial intelligence) , 1984 .

[43]  T. Speed,et al.  Decomposable graphs and hypergraphs , 1984, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[44]  Larry Wos,et al.  Automated Reasoning: Introduction and Applications , 1984 .

[45]  Alex Goodall,et al.  The guide to expert systems , 1985 .

[46]  Judea Pearl,et al.  A Constraint-Propagation Approach to Probabilistic Reasoning , 1985, UAI.

[47]  T. W. Anderson An Introduction to Multivariate Statistical Analysis, 2nd Edition. , 1985 .

[48]  Peter C. Cheeseman,et al.  In Defense of Probability , 1985, IJCAI.

[49]  A. Gibbons Algorithmic Graph Theory , 1985 .

[50]  Lawrence Stevens Artificial intelligence, the search for the perfect machine , 1985 .

[51]  C. Robert Kenley INFLUENCE DIAGRAM MODELS WITH CONTINUOUS VARIABLES , 1986 .

[52]  Edward A. Patrick,et al.  Artificial intelligence with statistical pattern recognition , 1986 .

[53]  L. Brown Fundamentals of statistical exponential families: with applications in statistical decision theory , 1986 .

[54]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[55]  J. Rissanen Stochastic Complexity and Modeling , 1986 .

[56]  Steven W. Norton An explanation mechanism for bayesian inferencing systems , 1986, UAI.

[57]  Ross D. Shachter Evaluating Influence Diagrams , 1986, Oper. Res..

[58]  K. Devlin THE COMPUTER MODELLING OF MATHEMATICAL REASONING , 1986 .

[59]  Eric Horvitz,et al.  A Framework for Comparing Alternative Formalisms for Plausible Reasoning , 1986, AAAI.

[60]  Judea Pearl,et al.  Fusion, Propagation, and Structuring in Belief Networks , 1986, Artif. Intell..

[61]  Egon Balas,et al.  Finding a Maximum Clique in an Arbitrary Graph , 1986, SIAM J. Comput..

[62]  David Lindley,et al.  The Probability Approach to the Treatment of Uncertainty in Artificial Intelligence and Expert Systems , 1987 .

[63]  L. Zadeh,et al.  Fuzzy sets and applications : selected papers , 1987 .

[64]  Judea Pearl,et al.  Convince: A Conversational Inference Consolidation Engine , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[65]  Judea Pearl,et al.  Evidential Reasoning Using Stochastic Simulation of Causal Models , 1987, Artif. Intell..

[66]  Oscar Firschein,et al.  Readings in computer vision: issues, problems, principles, and paradigms , 1987 .

[67]  Osman Balci,et al.  Validating Expert System Performance , 1987, IEEE Expert.

[68]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[69]  Lei Xu,et al.  Structuring causal tree models with continuous variables , 1987, Int. J. Approx. Reason..

[70]  Judea Pearl,et al.  Distributed Revision of Composite Beliefs , 1987, Artif. Intell..

[71]  Judea Pearl,et al.  The Logic of Representing Dependencies by Directed Graphs , 1987, AAAI.

[72]  Ross D. Shachter Probabilistic Inference and Influence Diagrams , 1988, Oper. Res..

[73]  Dan Geiger,et al.  On the logic of causal models , 2013, UAI.

[74]  Judea Pearl,et al.  Causal networks: semantics and expressiveness , 2013, UAI.

[75]  N. Wermuth,et al.  Graphical Models for Associations between Variables, some of which are Qualitative and some Quantitative , 1989 .

[76]  Kristian G. Olesen,et al.  HUGIN - A Shell for Building Bayesian Belief Universes for Expert Systems , 1989, IJCAI.

[77]  Dan Geiger,et al.  d-Separation: From Theorems to Algorithms , 2013, UAI.

[78]  Ross D. Shachter Evidence Absorption and Propagation through Evidence Reversals , 2013, UAI.

[79]  Ross D. Shachter,et al.  Simulation Approaches to General Probabilistic Inference on Belief Networks , 2013, UAI.

[80]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[81]  J. R. Brown,et al.  Programming the User Interface: Principles and Examples , 1989 .

[82]  Kuo-Chu Chang,et al.  Weighing and Integrating Evidence for Stochastic Simulation in Bayesian Networks , 2013, UAI.

[83]  Lawrence S. Kroll Mathematica--A System for Doing Mathematics by Computer. , 1989 .

[84]  Kristian G. Olesen,et al.  An algebra of bayesian belief universes for knowledge-based systems , 1990, Networks.

[85]  David Heckerman,et al.  A combination of cutset conditioning with clique-tree propagation in the Pathfinder system , 1990, UAI.

[86]  Judea Pearl,et al.  Equivalence and Synthesis of Causal Models , 1990, UAI.

[87]  Alun Preece,et al.  Towards a methodology for evaluating expert systems , 1990 .

[88]  Johanna D. Moore,et al.  Pointing: A Way Toward Explanation Dialogue , 1990, AAAI.

[89]  Ross D. Shachter,et al.  Symbolic Probabilistic Inference in Belief Networks , 1990, AAAI.

[90]  Gregory F. Cooper,et al.  Probabilistic inference in multiply connected belief networks using loop cutsets , 1990, Int. J. Approx. Reason..

[91]  Terrance E. Boult,et al.  Pruning bayesian networks for efficient computation , 1990, UAI.

[92]  George F. Luger,et al.  Artificial Intelligence and the Design of Expert Systems , 1990 .

[93]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[94]  Richard E. Neapolitan,et al.  Probabilistic reasoning in expert systems - theory and algorithms , 2012 .

[95]  R. Durrett Probability: Theory and Examples , 1993 .

[96]  D. Geiger Graphoids: a qualitative framework for probabilistic inference , 1990 .

[97]  Steffen L. Lauritzen,et al.  Bayesian updating in causal probabilistic networks by local computations , 1990 .

[98]  Heinrich Niemann Pattern Analysis and Understanding , 1990 .

[99]  David Heckerman,et al.  Probabilistic similarity networks , 1991, Networks.

[100]  Steven Skiena,et al.  Implementing discrete mathematics - combinatorics and graph theory with Mathematica , 1990 .

[101]  F. Guess Bayesian Statistics: Principles, Models, and Applications , 1990 .

[102]  Behzad Parviz,et al.  On heuristics for finding loop cutsets in multiply-connected belief networks , 1990, UAI.

[103]  M. Frydenberg The chain graph Markov property , 1990 .

[104]  Peter Jackson,et al.  Introduction to Expert Systems, 2nd Edition , 1990 .

[105]  Gregory F. Cooper,et al.  A randomized approximation algorithm for probabilistic inference on bayesian belief networks , 1990, Networks.

[106]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[107]  John S. Breese,et al.  Decision making with interval influence diagrams , 1990, UAI.

[108]  Wray L. Buntine Theory Refinement on Bayesian Networks , 1991, UAI.

[109]  Oscar N. Garcia,et al.  Knowledge-based systems : fundamentals and tools , 1991 .

[110]  Max Henrion,et al.  Search-Based Methods to Bound Diagnostic Probabilities in Very Large Belief Nets , 1991, UAI.

[111]  Kevin Knight,et al.  Artificial intelligence (2. ed.) , 1991 .

[112]  Gregory F. Cooper,et al.  An Empirical Analysis of Likelihood-Weighting Simulation on a Large, Multiply-Connected Belief Network , 1991, Computers and biomedical research, an international journal.

[113]  Enrique Castillo,et al.  Expert Systems: Uncertainty and Learning , 1991 .

[114]  Kuo-Chu Chang,et al.  Symbolic Probabilistic Inference with Continuous Variables , 1994, UAI.

[115]  Gregory F. Cooper,et al.  Initialization for the Method of Conditioning in Bayesian Belief Networks , 1991, Artif. Intell..

[116]  Gregory F. Cooper,et al.  A combination of exact algorithms for inference on Bayesian belief networks , 1991, Int. J. Approx. Reason..

[117]  Ross D. Shachter,et al.  Fusion and Propagation with Multiple Observations in Belief Networks , 1991, Artif. Intell..

[118]  Phillip J. McKerrow,et al.  Introduction to robotics , 1991 .

[119]  Gregory F. Cooper,et al.  A Bayesian Method for the Induction of Probabilistic Networks from Data , 1992 .

[120]  Milan Studeny,et al.  Conditional independence relations have no finite complete characterization , 1992 .

[121]  William B. Thompson,et al.  Reconstructive Expert System Explanation , 1992, Artif. Intell..

[122]  Kathleen McKeown,et al.  Text generation: using discourse strategies and focus constraints to generate natural language text , 1985 .

[123]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[124]  W. Gilks,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 1992 .

[125]  Bjørnar Tessem,et al.  Interval probability propagation , 1992, Int. J. Approx. Reason..

[126]  P. G. J. Lisboa Neural Networks: Current Applications , 1992 .

[127]  Charles Leave Neural Networks: Algorithms, Applications and Programming Techniques , 1992 .

[128]  Enrique Castillo,et al.  Conditionally Specified Distributions , 1992 .

[129]  Azriel Rosenfeld,et al.  Computer vision and image processing , 1992 .

[130]  Henri Jacques Suermondt,et al.  Explanation in Bayesian belief networks , 1992 .

[131]  B. Everitt Log-linear models for contingency tables , 1992 .

[132]  S. Normand,et al.  Parameter Updating in a Bayes Network , 1992 .

[133]  Patrick Henry Winston,et al.  Artificial intelligence (3rd ed.) , 1992 .

[134]  A. Paz,et al.  THE REPRESENTATION POWER OF PROBABILISTIC KNOWLEDGE BY UNDIRECTED GRAPHS AND DIRECTED ACYCLIC GRAPHS: A COMPARISON , 1993 .

[135]  Michael Luby,et al.  Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard , 1993, Artif. Intell..

[136]  David Poole,et al.  The use of conflicts in searching Bayesian networks , 1993, UAI.

[137]  A. Dawid,et al.  Hyper Markov Laws in the Statistical Analysis of Decomposable Graphical Models , 1993 .

[138]  Kathryn B. Laskey Sensitivity analysis for probability assessments in Bayesian networks , 1995, IEEE Trans. Syst. Man Cybern..

[139]  Kristian G. Olesen,et al.  Causal Probabilistic Networks with Both Discrete and Continuous Variables , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[140]  Matthew L. Ginsberg,et al.  Essentials of Artificial Intelligence , 2012 .

[141]  Anita M. Flynn,et al.  Mobile robots: inspiration to implementation , 1993 .

[142]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[143]  Serafín Moral,et al.  An axiomatic framework for propagating uncertainty in directed acyclic networks , 1993, Int. J. Approx. Reason..

[144]  Michael I. Jordan,et al.  Supervised Learning and Divide-and-Conquer: A Statistical Approach , 1993, ICML.

[145]  David Poole,et al.  Average-Case Analysis of a Search Algorithm for Estimating Prior and Posterior Probabilities in Bayesian Networks with Extreme Probabilities , 1993, IJCAI.

[146]  B. Arnold,et al.  Conjugate Exponential Family Priors For Exponential Family Likelihoods , 1993 .

[147]  T. Speed,et al.  Characterizing a joint probability distribution by conditionals , 1993 .

[148]  Zhaoyu Li,et al.  Efficient inference in Bayes networks as a combinatorial optimization problem , 1994, Int. J. Approx. Reason..

[149]  José Mira,et al.  DISTRIBUTED INFERENCE IN BAYESIAN NETWORKS , 1994 .

[150]  Remco R. Bouckaert,et al.  A Stratified Simulation Scheme for Inference in Bayesian Belief Networks , 1994, UAI.

[151]  James P. Braselton,et al.  Maple V by example , 1994 .

[152]  Milan Studený,et al.  Semigraphoids Are Two-Antecedental Approximations of Stochastic Conditional Independence Models , 1994, UAI.

[153]  Enrique Castillo,et al.  Log-Linear Models in Expert Systems , 1994 .

[154]  James A. Hendler,et al.  Readings in Planning , 1994 .

[155]  David Heckerman,et al.  Learning Gaussian Networks , 1994, UAI.

[156]  E. Castillo,et al.  Linear Programming and Expert Systems , 1994 .

[157]  F. Vegas Sistema experto bayesiano para ecocardiografía , 1994 .

[158]  Ross D. Shachter,et al.  Global Conditioning for Probabilistic Inference in Belief Networks , 1994, UAI.

[159]  Xi-la Liu,et al.  A Reasoning Method in Damage Assessment of Buildings , 1994 .

[160]  Dan Geiger,et al.  Approximation Algorithms for the Loop Cutset Problem , 1994, UAI.

[161]  Bruce D'Ambrosio,et al.  Symbolic Probabilistic Inference in Large BN20 Networks , 1994, UAI.

[162]  D. Madigan,et al.  Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .

[163]  John Durkin,et al.  Expert systems - design and development , 1994 .

[164]  José Manuel Gutiérrez,et al.  Causal Network Models in Expert Systems , 1994 .

[165]  Robert M. Fung,et al.  Backward Simulation in Bayesian Networks , 1994, UAI.

[166]  Enrique F. Castillo,et al.  Parametric Structure of Probabilities in Bayesian Networks , 1995, ECSQARU.

[167]  Luis Daniel Hernández Molinero Diseño y validación de nuevos algoritmos para el tratamiento de grafos de dependencias , 1995 .

[168]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[169]  R. Bouckaert Bayesian belief networks : from construction to inference , 1995 .

[170]  James F. Allen Natural language understanding (2nd ed.) , 1995 .

[171]  José Manuel Bernal Llorente Sistemas expertos, grafos y redes bayesianas , 1995 .

[172]  Enrique F. Castillo,et al.  Error Estimation in Approximate Bayesian Belief Network Inference , 1995, UAI.

[173]  David Heckerman,et al.  Learning Bayesian Networks: A Unification for Discrete and Gaussian Domains , 1995, UAI.

[174]  Simon Kasif,et al.  Logarithmic-Time Updates and Queries in Probabilistic Networks , 1995, UAI.

[175]  Hong Xu,et al.  Computing Marginals for Arbitrary Subsets from Marginal Representation in Markov Trees , 1995, Artif. Intell..

[176]  Christopher Meek,et al.  Learning Bayesian Networks with Discrete Variables from Data , 1995, KDD.

[177]  Adnan Darwiche,et al.  Conditioning Algorithms for Exact and Approximate Inference in Causal Networks , 1995, UAI.

[178]  David Maxwell Chickering,et al.  A Transformational Characterization of Equivalent Bayesian Network Structures , 1995, UAI.

[179]  David Heckerman,et al.  A Characterization of the Dirichlet Distribution with Application to Learning Bayesian Networks , 1995, UAI.

[180]  Luis M. de Campos,et al.  Independence Concepts for Convex Sets of Probabilities , 1995, UAI.

[181]  Russell G. Almond Graphical belief modeling , 1995 .

[182]  P. Pandurang Nayak,et al.  Efficient enumeration of instantiations in Bayesian networks , 1996, UAI.

[183]  Enrique F. Castillo,et al.  Goal Oriented Symbolic Propagation in Bayesian Networks , 1996, AAAI/IAAI, Vol. 2.

[184]  M. Almulla Analysis of the use of semantic trees in automated theorem proving , 1996 .

[185]  Enrique F. Castillo,et al.  A modified simulation scheme for inference in Bayesian networks , 1996, Int. J. Approx. Reason..

[186]  David Maxwell Chickering,et al.  Learning Equivalence Classes of Bayesian Network Structures , 1996, UAI.

[187]  Enrique F. Castillo,et al.  Tail Sensitivity Analysis in Bayesian Networks , 1996, UAI.

[188]  Enrique F. Castillo,et al.  A new method for efficient symbolic propagation in discrete Bayesian networks , 1996, Networks.

[189]  F. J. Ez Local Conditioning in Bayesian Networks , 1996 .

[190]  B. Arnold,et al.  Priors with Convenient Posteriors , 1996 .

[191]  B. Arnold,et al.  Specification of distributions by combinations of marginal and conditional distributions , 1996 .

[192]  Doug Fisher,et al.  Learning from Data: Artificial Intelligence and Statistics V , 1996 .

[193]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[194]  Enrique F. Castillo,et al.  Symbolic propagation and sensitivity analysis in Gaussian Bayesian networks with application to damage assessment , 1997, Artif. Intell. Eng..

[195]  Enrique F. Castillo,et al.  Sensitivity analysis in discrete Bayesian networks , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[196]  Enrique F. Castillo,et al.  Estimating extreme probabilities using tail simulated data , 1997, Int. J. Approx. Reason..

[197]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1998, Learning in Graphical Models.

[198]  A. Hadi,et al.  Modeling Probabilistic Networks of Discrete and Continuous Variables , 1998 .