TiO2 nanotube arrays annealed in CO exhibiting high performance for lithium ion intercalation

[1]  G. Cao,et al.  Mesoporous Hydrous Manganese Dioxide Nanowall Arrays with Large Lithium Ion Energy Storage Capacities , 2009 .

[2]  G. Cao,et al.  Carbon monoxide annealed TiO2nanotube array electrodes for efficient biosensor applications , 2009 .

[3]  Wen-lou Wang,et al.  High power and high capacity cathode material LiNi0.5Mn0.5O2 for advanced lithium-ion batteries , 2008 .

[4]  G. Cao,et al.  Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases , 2008 .

[5]  H. Qiao,et al.  High lithium electroactivity of hierarchical porous rutile TiO2 nanorod microspheres , 2008 .

[6]  Haoshen Zhou,et al.  High rate performances of hydrogen titanate nanowires electrodes , 2008 .

[7]  G. Cao,et al.  TiO 2 Nanotube Arrays Annealed in N 2 for Efficient Lithium-Ion Intercalation , 2008 .

[8]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[9]  F. Kang,et al.  Investigations on the modified natural graphite as anode materials in lithium ion battery , 2008 .

[10]  Jinwei Xu,et al.  Preparation and electrochemical properties of carbon-doped TiO2 nanotubes as an anode material for lithium-ion batteries , 2008 .

[11]  G. Cao,et al.  Hydrous Manganese Dioxide Nanowall Arrays Growth and Their Li+ Ions Intercalation Electrochemical Properties , 2008 .

[12]  Pierre Kubiak,et al.  Electrochemical performance of mesoporous TiO2 anatase , 2008 .

[13]  John N. Harb,et al.  Modeling of Particle-Particle Interactions in Porous Cathodes for Lithium-Ion Batteries , 2007 .

[14]  Wei Zhang,et al.  Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries , 2007 .

[15]  G. Cao,et al.  TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing , 2007 .

[16]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[17]  Q. Cao,et al.  Preparation and characterization of three-dimensionally ordered mesoporous titania microparticles as anode material for lithium ion battery , 2007 .

[18]  M. Miyayama,et al.  Lithium Intercalation Properties of Reassembled Titanate/Carbon Composites , 2007 .

[19]  C. M. Li,et al.  Novel porous anatase TiO2 nanorods and their high lithium electroactivity , 2007 .

[20]  G. Cao,et al.  Titania Particle Size Effect on the Overall Performance of Dye-Sensitized Solar Cells , 2007 .

[21]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[22]  B. Dong,et al.  Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery , 2007 .

[23]  P. Bruce,et al.  TiO2(B) Nanowires as an Improved Anode Material for Lithium‐Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte , 2006 .

[24]  L. Fu,et al.  Novel TiO2/C nanocomposites for anode materials of lithium ion batteries , 2006 .

[25]  M. Morris,et al.  The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2 , 2006 .

[26]  Takamasa Ishigaki,et al.  Pyrogenic iron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties. , 2005, Journal of the American Chemical Society.

[27]  Y. Lan,et al.  Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. , 2005, Journal of the American Chemical Society.

[28]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[29]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[30]  Zhongtai Zhang,et al.  H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability , 2005 .

[31]  S. Tolbert,et al.  The Relationship Between Nanoscale Structure and Electrochemical Properties of Vanadium Oxide Nanorolls , 2004 .

[32]  H. Jung,et al.  In situ observation of the stability of anatase nanoparticles and their transformation to rutile in an acidic solution. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[33]  M. Yoshio,et al.  Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere , 2004 .

[34]  Yan Zhang,et al.  Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis , 2004 .

[35]  C. Love,et al.  Improved lithium capacity of defective V2O5 materials , 2002 .

[36]  J. Yao,et al.  Promoted phase transition of titania nanoparticles prepared by a photo-assisted sol-gel method , 2002 .

[37]  Ladislav Kavan,et al.  Lithium insertion into titanium dioxide (anatase) electrodes: microstructure and electrolyte effects , 2001 .

[38]  Seung M. Oh,et al.  Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries , 2001 .

[39]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[40]  E. Garza,et al.  Comparison study of physical vapor-deposited and chemical vapor-deposited titanium nitride thin films using X-ray photoelectron spectroscopy , 2000 .

[41]  F. Dinelli,et al.  The surface structure of TiO2(001) after high temperature annealing studied by AFM, STM, and optical microscopy , 2000 .

[42]  E. Lesniewska,et al.  Superficial defects induced by argon and oxygen bombardments on (110) TiO2 surfaces , 1998 .

[43]  L. Johansson Electronic and structural properties of transition-metal carbide and nitride surfaces , 1995 .

[44]  Donald R. Baer,et al.  Creation of variable concentrations of defects on TiO2(110) using low-density electron beams , 1994 .