Refinement of Atomic Structures Against cryo-EM Maps.

This review describes some of the methods for atomic structure refinement (fitting) against medium/high-resolution single-particle cryo-EM reconstructed maps. Some of the tools developed for macromolecular X-ray crystal structure analysis, especially those encapsulating prior chemical and structural information can be transferred directly for fitting into cryo-EM maps. However, despite the similarities, there are significant differences between data produced by these two techniques; therefore, different likelihood functions linking the data and model must be used in cryo-EM and crystallographic refinement. Although tools described in this review are mostly designed for medium/high-resolution maps, if maps have sufficiently good quality, then these tools can also be used at moderately low resolution, as shown in one example. In addition, the use of several popular crystallographic methods is strongly discouraged in cryo-EM refinement, such as 2Fo-Fc maps, solvent flattening, and feature-enhanced maps (FEMs) for visualization and model (re)building. Two problems in the cryo-EM field are overclaiming resolution and severe map oversharpening. Both of these should be avoided; if data of higher resolution than the signal are used, then overfitting of model parameters into the noise is unavoidable, and if maps are oversharpened, then at least parts of the maps might become very noisy and ultimately uninterpretable. Both of these may result in suboptimal and even misleading atomic models.

[1]  Garib N Murshudov,et al.  Fisher's information in maximum-likelihood macromolecular crystallographic refinement. , 2003, Acta crystallographica. Section D, Biological crystallography.

[2]  G. McMullan,et al.  Electronic detectors for electron microscopy , 2011, Quarterly Reviews of Biophysics.

[3]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[4]  B. Vainshtein,et al.  Structure Analysis by Electron Diffraction , 1956 .

[5]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[6]  Leonardo G. Trabuco,et al.  Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. , 2008, Structure.

[7]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[8]  Dmitry Lyumkis,et al.  Likelihood-based classification of cryo-EM images using FREALIGN. , 2013, Journal of structural biology.

[9]  W. Kühlbrandt,et al.  Cryo-EM enters a new era , 2014, eLife.

[10]  V. Luzzati,et al.  Traitement statistique des erreurs dans la determination des structures cristallines , 1952 .

[11]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[12]  Shaoxia Chen,et al.  Prevention of overfitting in cryo-EM structure determination , 2012, Nature Methods.

[13]  Ben M. Webb,et al.  Protein structure fitting and refinement guided by cryo-EM density. , 2008, Structure.

[14]  John D. Westbrook,et al.  EMDataBank.org: unified data resource for CryoEM , 2010, Nucleic Acids Res..

[15]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[16]  A. Brigo,et al.  The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology , 2002, Journal of molecular recognition : JMR.

[17]  Fei Long,et al.  Low-resolution refinement tools in REFMAC5 , 2012, Acta crystallographica. Section D, Biological crystallography.

[18]  Krista Joosten,et al.  PDB_REDO: constructive validation, more than just looking for errors , 2012, Acta crystallographica. Section D, Biological crystallography.

[19]  湯川 秀樹,et al.  On the interaction of elementary particles , 1938 .

[20]  J. Spence High-Resolution Electron Microscopy , 2003 .

[21]  M. L. Eaton Multivariate statistics : a vector space approach , 1985 .

[22]  C. Sachse,et al.  Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles , 2015, Nature.

[23]  A. Wilson,et al.  The probability distribution of X-ray intensities , 1949 .

[24]  K Cowtan,et al.  Miscellaneous algorithms for density modification. , 1998, Acta crystallographica. Section D, Biological crystallography.

[25]  Fei Long,et al.  REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. , 2004, Acta crystallographica. Section D, Biological crystallography.

[26]  P E Bourne,et al.  The Protein Data Bank. , 2002, Nucleic acids research.

[27]  P. Penczek,et al.  A Primer to Single-Particle Cryo-Electron Microscopy , 2015, Cell.

[28]  P. Turner,et al.  Relativistic Hartree–Fock X‐ray and electron scattering factors , 1968 .

[29]  H. Yukawa On the Interaction of Elementary Particles I , 1955 .

[30]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[31]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[32]  G. Zanotti,et al.  Structure of sulfur-substituted rhodanese at 1.36 A resolution. , 1998, Acta crystallographica. Section D, Biological crystallography.

[33]  V. Ramakrishnan,et al.  Initiation of Translation by Cricket Paralysis Virus IRES Requires Its Translocation in the Ribosome , 2014, Cell.

[34]  Ardan Patwardhan,et al.  Collaborative Computational Project for Electron cryo-Microscopy , 2015, Acta crystallographica. Section D, Biological crystallography.

[35]  R. Henderson,et al.  High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy☆ , 2013, Ultramicroscopy.

[36]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[37]  Alan Brown,et al.  Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions , 2015, Acta crystallographica. Section D, Biological crystallography.

[38]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[39]  S. Scheres Beam-induced motion correction for sub-megadalton cryo-EM particles , 2014, eLife.

[40]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[41]  David Baker,et al.  Cryo‐EM model validation using independent map reconstructions , 2013, Protein science : a publication of the Protein Society.

[42]  A. Bartesaghi,et al.  2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor , 2015, Science.

[43]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[44]  Yifan Cheng Single-Particle Cryo-EM at Crystallographic Resolution , 2015, Cell.

[45]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[46]  Randy J. Read,et al.  Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[47]  D. Julius,et al.  Structure of the TRPV1 ion channel determined by electron cryo-microscopy , 2013, Nature.

[48]  Cryo-EM structure of the Slo2.2 Na+-activated K+ channel , 2015, Nature.

[49]  Paul D. Adams,et al.  FEM: feature-enhanced map , 2014, Acta crystallographica. Section D, Biological crystallography.

[50]  V. Ramakrishnan,et al.  Molecular Architecture of a Eukaryotic Translational Initiation Complex , 2013, Science.

[51]  Earl J. Kirkland,et al.  Advanced Computing in Electron Microscopy , 1998 .

[52]  Sergei L. Dudarev,et al.  Robust Parameterization of Elastic and Absorptive Electron Atomic Scattering Factors , 1996 .

[53]  G N Murshudov,et al.  Incorporation of prior phase information strengthens maximum-likelihood structure refinement. , 1998, Acta crystallographica. Section D, Biological crystallography.

[54]  J. Rubinstein,et al.  Beyond blob-ology , 2014, Science.

[55]  B. Klaholz,et al.  Structure of the human 80S ribosome , 2015, Nature.

[56]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[57]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[58]  Michael Levitt,et al.  Super-resolution biomolecular crystallography with low-resolution data , 2010, Nature.

[59]  P. Main,et al.  A theoretical comparison of the ,?' and 2FoFc syntheses , 1979 .

[60]  Alan Brown,et al.  Structure of the Yeast Mitochondrial Large Ribosomal Subunit , 2014, Science.

[61]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[62]  W. Chiu,et al.  Comparison of Segger and other methods for segmentation and rigid-body docking of molecular components in cryo-EM density maps. , 2012, Biopolymers.