On Triangulations with High Vertex Degree

Abstract.We solve three enumerative problems concerning the families of planar maps. More precisely, we establish algebraic equations for the generating function of loopless triangulations in which all vertices have degree at least d, for a certain value d chosen in {3, 4, 5}.The originality of the problem lies in the fact that degree restrictions are placed both on vertices and faces. Our proofs first follow Tutte’s classical approach: We decompose maps by deleting the root-edge and translate the decomposition into an equation satisfied by the generating function of the maps under consideration. Then we proceed to solve the equation obtained using a recent technique that extends the so-called quadratic method.

[1]  Gilles Schaeffer,et al.  The degree distribution in bipartite planar maps: applications to the Ising model , 2002 .

[2]  C. Itzykson,et al.  Quantum field theory techniques in graphical enumeration , 1980 .

[3]  Zhi-Cheng Gao,et al.  The number of rooted 2-connected triangular maps on the projective plane , 1991, J. Comb. Theory, Ser. B.

[4]  S. Abhyankar Algebraic geometry for scientists and engineers , 1990 .

[5]  W. T. Tutte A Census of Hamiltonian Polygons , 1962, Canadian Journal of Mathematics.

[6]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[7]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[8]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[9]  Doron Zeilberger,et al.  The Umbral Transfer-Matrix Method. I. Foundations , 2000, J. Comb. Theory, Ser. A.

[10]  2D QUANTUM GRAVITY,MATRIX MODELS AND GRAPH COMBINATORICS , 2004, math-ph/0406013.

[11]  W. T. Tutte Chromatic sums for rooted planar triangulations. IV. The case $lambda =infty $ , 1973 .

[12]  W. G. Brown Enumeration of Triangulations of the Disk , 1964 .

[13]  W. T. Tutte Chromatic sums revisited , 1995 .

[14]  Dominique Poulalhon,et al.  Optimal Coding and Sampling of Triangulations , 2003, Algorithmica.

[15]  Dominique Poulalhon,et al.  A bijection for triangulations of a polygon with interior points and multiple edges , 2003, Theor. Comput. Sci..

[16]  J. Bouttier,et al.  Combinatorics of bicubic maps with hard particles , 2005 .

[17]  A. Zvonkin Matrix integrals and map enumeration: An accessible introduction , 1997 .

[18]  Bruno Salvy,et al.  GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.

[19]  Philippe Flajolet,et al.  Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.

[20]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[21]  Mireille Bousquet-Mélou,et al.  Polynomial equations with one catalytic variable, algebraic series and map enumeration , 2006, J. Comb. Theory, Ser. B.

[22]  W. G. Brown On the existence of square roots in certain rings of power series , 1965 .

[23]  G. Parisi,et al.  Planar diagrams , 1978 .

[24]  G. Hooft A Planar Diagram Theory for Strong Interactions , 1974 .

[25]  Ian M. Wanless,et al.  Counting 5-connected planar triangulations , 2001 .

[26]  R. Mullin,et al.  On Counting Rooted Triangular Maps , 1965, Canadian Journal of Mathematics.

[27]  Dominique Poulalhon,et al.  Optimal Coding and Sampling of Triangulations , 2003, ICALP.

[28]  Zhi-Cheng Gao The number of rooted triangular maps on a surface , 1991, J. Comb. Theory, Ser. B.

[29]  Mireille Bousquet-Mélou,et al.  Enumeration of Planar Constellations , 2000, Adv. Appl. Math..

[30]  N. Wormald,et al.  Enumeration of Rooted Cubic Planar Maps , 2002 .

[31]  Gilles Schaeer,et al.  Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees , 1997 .

[32]  I. Goulden,et al.  Combinatorial Enumeration , 2004 .

[33]  Doron Zeilberger The Umbral Transfer-Matrix Method , III : Counting Animals , 2001 .

[34]  W. T. Tutte A Census of Slicings , 1962, Canadian Journal of Mathematics.

[35]  P. Francesco,et al.  Census of planar maps: From the one-matrix model solution to a combinatorial proof , 2002, cond-mat/0207682.