The Model Checking Problem for Prefix Classes of Second-Order Logic: A Survey

In this paper, we survey results related to the model checking problem for second-order logic over classes of finite structures, including word structures (strings), graphs, and trees, with a focus on prefix classes, that is, where all quantifiers (both first- and second-order ones) are at the beginning of formulas. A complete picture of the prefix classes defining regular and non-regular languages over strings is known, which nearly completely coincides with the tractability frontier; some complexity issues remain to be settled, though. Over graphs and arbitrary relational structures, the tractability frontier is completely delineated for the existential second-order fragment, while it is less explored for trees. Besides surveying some of the results, we mention some open issues for research.

[1]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[2]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[3]  Jean-Éric Pin,et al.  Logic, semigroups and automata on words , 1996, Annals of Mathematics and Artificial Intelligence.

[4]  John Doner,et al.  Tree Acceptors and Some of Their Applications , 1970, J. Comput. Syst. Sci..

[5]  Daniel Leivant,et al.  Descriptive Characterizations of Computational Complexity , 1989, J. Comput. Syst. Sci..

[6]  Nicolás Marín,et al.  Review of Data on the Web: from relational to semistructured data and XML by Serge Abiteboul, Peter Buneman, and Dan Suciu. Morgan Kaufmann 1999. , 2003, SGMD.

[7]  Marc Bezem,et al.  A Descriptive Characterisation of Even Linear Languages , 2003, Grammars.

[8]  James W. Thatcher,et al.  Generalized finite automata theory with an application to a decision problem of second-order logic , 1968, Mathematical systems theory.

[9]  Frédéric Olive,et al.  A Conjunctive Logical Characterization of Nondeterministic Linear Time , 1997, CSL.

[10]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[11]  Thomas Schwentick,et al.  Query automata over finite trees , 2002, Theor. Comput. Sci..

[12]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[13]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[14]  Howard Straubing,et al.  Regular Languages Defined with Generalized Quanifiers , 1995, Inf. Comput..

[15]  Dan Suciu,et al.  Data on the Web: From Relations to Semistructured Data and XML , 1999 .

[16]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[17]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[18]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[19]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[20]  Georg Gottlob,et al.  Visual Web Information Extraction with Lixto , 2001, VLDB.

[21]  Etienne Grandjean,et al.  The Minimal Logically-Defined NP-Complete Problem , 2004, STACS.

[22]  Robert McNaughton,et al.  Counter-Free Automata (M.I.T. research monograph no. 65) , 1971 .

[23]  Nils Klarlund,et al.  Mona: Monadic Second-Order Logic in Practice , 1995, TACAS.

[24]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[25]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[26]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[27]  Georg Gottlob,et al.  Existential second-order logic over strings , 2000, JACM.

[28]  Thomas Schwentick,et al.  Second-Order Logic over Strings: Regular and Non-regular Fragments , 2001, Developments in Language Theory.

[29]  Etienne Grandjean Universal quantifiers and time complexity of random access machines , 2005, Mathematical systems theory.

[30]  Thomas Schwentick,et al.  Logics For Context-Free Languages , 1994, CSL.

[31]  Georg Gottlob,et al.  Normal Forms for Second-Order Logic over Finite Structures, and Classification of NP Optimization Problems , 1996, Ann. Pure Appl. Log..

[32]  Georg Gottlob,et al.  Second-Order Logic over Finite Structures - Report on a Research Programme , 2004, Electron. Notes Discret. Math..

[33]  Georg Gottlob,et al.  The Lixto data extraction project: back and forth between theory and practice , 2004, PODS.

[34]  Georg Gottlob,et al.  Monadic queries over tree-structured data , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[35]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[36]  Thomas Schwentick,et al.  Existential second-order logic over graphs: Charting the tractability frontier , 2004, JACM.

[37]  Carsten Thomassen,et al.  On the presence of disjoint subgraphs of a specified type , 1988, J. Graph Theory.

[38]  Erich Grädel,et al.  Two-variable descriptions of regularity , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[39]  David A. Basin,et al.  Hardware Verification using Monadic Second-Order Logic , 1995, CAV.

[40]  James F. Lynch The quantifier structure of sentences that characterize nondeterministic time complexity , 2005, computational complexity.

[41]  Yassine Hachaïchi Fragments of Monadic Second-Order Logics Over Word Structures , 2005, Electron. Notes Theor. Comput. Sci..

[42]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[43]  Jean-Éric Pin,et al.  Logic on Words , 2001, Bull. EATCS.

[44]  Christos H. Papadimitriou,et al.  Some computational aspects of circumscription , 1988, JACM.

[45]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[46]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[47]  Nils Klarlund,et al.  MONA 1.x: New Techniques for WS1S and WS2S , 1998, CAV.