Chapter 4 Cutinases

[1]  S. Petersen,et al.  Cutinase-AOT interactions in reverse micelles: the effect of 1-hexanol. , 2003, Chemistry and physics of lipids.

[2]  B. Chang,et al.  Biodegradation of phthalate esters by two bacteria strains. , 2004, Chemosphere.

[3]  R. P. Mathur,et al.  Identification of metabolites of malathion in plant, water and soil by GC-MS. , 1997, Biomedical chromatography : BMC.

[4]  J. Vind,et al.  Studies on ferulic acid esterase activity in fungal lipases and cutinases , 2002 .

[5]  N. Gandhi Applications of lipase , 1997 .

[6]  D. Thomas,et al.  Enzymatic synthesis of geraniol esters in a solvent-free system by lipases , 1996, Biotechnology Letters.

[7]  K. Mukherjee Lipase-Catalyzed Reactions for Modification of fats and other Lipids , 1990 .

[8]  J. C. Santos,et al.  Modificação de óleos e gorduras por biotransformação , 2004 .

[9]  C. Soares,et al.  Protein structure and dynamics in nonaqueous solvents: insights from molecular dynamics simulation studies. , 2003, Biophysical journal.

[10]  Geoffrey Hills,et al.  Industrial use of lipases to produce fatty acid esters , 2003 .

[11]  A. Klibanov Improving enzymes by using them in organic solvents , 2001, Nature.

[12]  C. Triantaphylidès,et al.  Lipase catalyzed formation of flavour esters , 1988, Biotechnology Letters.

[13]  C. R. Soccol,et al.  The realm of microbial lipases in biotechnology , 1999, Biotechnology and applied biochemistry.

[14]  Kurt Faber,et al.  Biotransformations in Organic Chemistry , 1992 .

[15]  S. Moon,et al.  Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp. pisi cutinase. , 2005, Chemosphere.

[16]  W. Zimmermann,et al.  Biocatalytic modification of polyethylene terephthalate fibres by esterases from actinomycete isolates , 2004 .

[17]  C. Bastioli Starch -Polymer Composites , 1995 .

[18]  W. Soetaert,et al.  Bioflavours and fragrances via fermentation and biocatalysis , 2002 .

[19]  C. T. Verrips,et al.  Mechanism of removal of immobilized triacylglycerol by lipolytic enzymes in a sequential laundry wash process , 1998 .

[20]  Valdir Soldi,et al.  Aplicações sintéticas de lipases imobilizadas em polímeros , 2004 .

[21]  Daniela Wosiack da Silva,et al.  Potencial de biocatálise enantiosseletiva de lipases microbianas , 2005 .

[22]  J. Cabral,et al.  Application of factorial design to the study of transesterification reactions using cutinase in AOT-reversed micelles , 1997 .

[23]  Recombinant Saccharomyces cerevisiae strain triggers acetate production to fuel biosynthetic pathways. , 2004, Journal of biotechnology.

[24]  J. Cabral,et al.  Enantioselective properties of Fusarium solani pisi cutinase on transesterification of acyclic diols : activity and stability evaluation , 2001 .

[25]  V. John,et al.  Lipase Catalysis and Its Applications , 1991 .

[26]  H. Sung,et al.  Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, Macrobrachium rosenbergii. , 2003, Aquatic toxicology.

[27]  V. Nierstrasz,et al.  Enzymatic surface modification of poly(ethylene terephthalate). , 2005, Journal of biotechnology.

[28]  K J Kennedy,et al.  Testing of alkaline and enzymatic hydrolysis pretreatments for fat particles in slaughterhouse wastewater. , 2001, Bioresource technology.

[29]  T. Scheper,et al.  Enzymes in non-conventional phases , 1995 .

[30]  Rolf-Joachim Mueller,et al.  Biological degradation of synthetic polyesters—Enzymes as potential catalysts for polyester recycling , 2006 .

[31]  M. Haas,et al.  Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches , 2000 .

[32]  Joaquim M. S. Cabral,et al.  Improving cutinase stability in aqueous solution and in reverse micelles by media engineering , 2003 .

[33]  W. D. Murray,et al.  Microbiological and Enzymatic Production of Flavor and Fragrance Chemicals , 1989 .

[34]  A. Klibanov Enzymatic catalysis in anhydrous organic solvents. , 1989, Trends in biochemical sciences.

[35]  Janice E. Chambers,et al.  Organophosphates : chemistry, fate, and effects , 1992 .

[36]  E. Schacht,et al.  Stability studies of a recombinant cutinase immobilized to dextran and derivatized silica supports , 1999 .

[37]  J. Lima,et al.  Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. , 2000, Journal of agricultural and food chemistry.

[38]  Gabriela Alves Macedo,et al.  Optimizing the production of cutinase by Fusarium oxysporum using response surface methodology , 2007 .

[39]  M. R. Egmond,et al.  Fusarium solani pisi cutinase. , 2000, Biochimie.

[40]  N. Kerry,et al.  Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. , 1997, Atherosclerosis.

[41]  V. Balcão,et al.  Flavour development via lipolysis of milkfats: changes in free fatty acid pool , 2007 .

[42]  Dan Gilead,et al.  Degradable polymers : principles and applications , 1995 .

[43]  Artur Cavaco-Paulo,et al.  New enzymes with potential for PET surface modification , 2004 .

[44]  M. Akke,et al.  Unfolding and inactivation of cutinases by AOT and guanidine hydrochloride. , 2005, Biochimica et biophysica acta.

[45]  A. Marangoni,et al.  Biotechnological strategies for the modification of food lipids. , 1999, Biotechnology & genetic engineering reviews.

[46]  W. Schwack,et al.  Cutinase inhibition by means of insecticidal organophosphates and carbamates , 2007, Journal of agricultural and food chemistry.

[47]  H. Berendsen,et al.  FUSARIUM SOLANI PISI CUTINASE: CONSEQUENCES FOR STABILITY IN THE PRESENCE OF SURFACTANTS , 2001 .

[48]  Janice R. Lima e Renata T. Nassu Substitutos de Gorduras em Alimentos: Características e Aplicações , 1996 .

[49]  P. Villeneuve,et al.  Phenolic acids enzymatic lipophilization. , 2005, Journal of agricultural and food chemistry.

[50]  M. Aires-Barros,et al.  Kinetics of cutinase catalyzed transesterification in AOT reversed micelles: modeling of a batch stirred tank reactor. , 2000, Journal of biotechnology.

[51]  M. Egmond,et al.  Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogues. Effect of acyl chain length and position in the substrate molecule on activity and enantioselectivity. , 1995, Biochemistry.

[52]  F. Gunstone What else besides commodity oils and fats , 1999 .

[53]  T. Pio,et al.  A rapid screening method for cutinase producing microorganisms , 2005 .

[54]  H. Gérard,et al.  Screening of Nonfilamentous Bacteria for Production of Cutin-Degrading Enzymes , 1992, Applied and environmental microbiology.

[55]  R. Vinopal,et al.  Fusarium polycaprolactone depolymerase is cutinase , 1996, Applied and environmental microbiology.

[56]  Sajja Hari Krishna,et al.  Developments and trends in enzyme catalysis in nonconventional media. , 2002, Biotechnology advances.

[57]  C. Akoh,et al.  Effect of reaction parameters on SP435 lipase-catalyzed synthesis of citronellyl acetate in organic solvent , 1994 .

[58]  H. F. de Castro,et al.  Evaluation of different approaches for lipase catalysed synthesis of citronellyl acetate , 1997, Biotechnology Letters.

[59]  R. Gross,et al.  A Cutinase with Polyester Synthesis Activity , 2007 .

[60]  I. Maiti,et al.  Cutinases from fungi and pollen , 1981 .

[61]  Artur Cavaco-Paulo,et al.  Cutinase—A new tool for biomodification of synthetic fibers , 2005 .

[62]  B. Mattiasson,et al.  Enzymatic catalysis in microemulsions: Enzyme reuse and product recovery , 1990, Biotechnology and bioengineering.

[63]  T. Galloway,et al.  Immunotoxicity of Organophosphorous Pesticides , 2003, Ecotoxicology.

[64]  W. Schwack,et al.  Cutinase inhibition by means of insecticidal organophosphates and carbamates Part 2: screening of representative insecticides on cutinase activity , 2008 .

[65]  J. Breccia,et al.  The search for a peptide ligand targeting the lipolytic enzyme cutinase , 2003 .

[66]  F. Kolisis,et al.  Enantiomeric selectivity of a lipase from Penicillium simplicissimum in the esterification of menthol in microemulsions , 1993, Biotechnology Letters.

[67]  N. Barlas Toxicological Assessment of Biodegraded Malathion in Albino Mice , 1996, Bulletin of environmental contamination and toxicology.

[68]  R. Henderson,et al.  NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di(2-ethylhexyl) phthalate. , 2002, Reproductive toxicology.

[69]  M. A. Sanromán,et al.  Production of Food Aroma Compounds: Microbial and Enzymatic Methodologies , 2006 .

[70]  Márcia C. M. R. Leal,et al.  Hydrolytic enzymes as coadjuvants in the anaerobic treatment of dairy wastewaters , 2002 .

[71]  E. Macedo,et al.  Cutinase activity in supercritical and organic media: water activity, solvation and acid–base effects , 2005 .

[72]  F. Kolisis,et al.  Studies on the enzymatic synthesis of lipophilic derivatives of natural antioxidants , 1999 .

[73]  M. Aires-Barros,et al.  Cutinase: from molecular level to bioprocess development. , 1999, Biotechnology and bioengineering.

[74]  S. Petersen,et al.  Protein engineering the surface of enzymes. , 1998, Journal of biotechnology.

[75]  Gabriela Alves Macedo,et al.  Lipases de látex vegetais: propriedades e aplicações industriais , 2006 .

[76]  Ofir Degani,et al.  Potential use of cutinase in enzymatic scouring of cotton fiber cuticle , 2002, Applied biochemistry and biotechnology.