Decentralised Coordination of Mobile Sensors Using the Max-Sum Algorithm

In this paper, we introduce an on-line, decentralised coordination algorithm for monitoring and predicting the state of spatial phenomena by a team of mobile sensors. These sensors have their application domain in disaster response, where strict time constraints prohibit path planning in advance. The algorithm enables sensors to coordinate their movements with their direct neighbours to maximise the collective information gain, while predicting measurements at unobserved locations using a Gaussian process. It builds upon the max-sum message passing algorithm for decentralised coordination, for which we present two new generic pruning techniques that result in speed-up of up to 92% for 5 sensors. We empirically evaluate our algorithm against several on-line adaptive coordination mechanisms, and report a reduction in root mean squared error up to 50% compared to a greedy strategy.

[1]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[2]  Sarvapali D. Ramchurn,et al.  2008 International Conference on Information Processing in Sensor Networks Towards Real-Time Information Processing of Sensor Network Data using Computationally Efficient Multi-output Gaussian Processes , 2022 .

[3]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[4]  Andreas Krause,et al.  Near-optimal sensor placements in Gaussian processes , 2005, ICML.

[5]  Eugene C. Freuder A sufficient condition for backtrack-bounded search , 1985, JACM.

[6]  Andreas Krause,et al.  Efficient Planning of Informative Paths for Multiple Robots , 2006, IJCAI.

[7]  Georg Gottlob,et al.  On Tractable Queries and Constraints , 1999, DEXA.

[8]  Adnan Darwiche,et al.  Compiling Devices: A Structure-Based Approach , 1998, KR.

[9]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[10]  David M. Fratantoni,et al.  Multi-AUV Control and Adaptive Sampling in Monterey Bay , 2006, IEEE Journal of Oceanic Engineering.

[11]  Johan de Kleer Focusing on Probable Diagnoses , 1991, AAAI.

[12]  Mugur M. Tatar,et al.  Computing Minimal Conflicts for Rich Constraint Languages , 2002, ECAI.

[13]  Nicholas R. Jennings,et al.  Decentralised coordination of low-power embedded devices using the max-sum algorithm , 2008, AAMAS.

[14]  Boi Faltings,et al.  A Scalable Method for Multiagent Constraint Optimization , 2005, IJCAI.

[15]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[16]  J. Davenport Editor , 1960 .

[17]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[18]  Marc Gyssens,et al.  Decomposing Constraint Satisfaction Problems Using Database Techniques , 1994, Artif. Intell..

[19]  Georg Gottlob,et al.  A Comparison of Structural CSP Decomposition Methods , 1999, IJCAI.

[20]  Markus Stumptner,et al.  Diagnosing tree-structured systems , 2001, Artif. Intell..

[21]  Peter Stone,et al.  A multi-robot system for continuous area sweeping tasks , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[22]  Georg Gottlob,et al.  Combining hypertree, bicomp, and hinge decomposition , 2002, ECAI.

[23]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[24]  Andreas Krause,et al.  Nonmyopic Informative Path Planning in Spatio-Temporal Models , 2007, AAAI.

[25]  Stephen Fitzpatrick,et al.  Distributed Coordination through Anarchic Optimization , 2003 .

[26]  Kian Hsiang Low,et al.  Adaptive multi-robot wide-area exploration and mapping , 2008, AAMAS.