Behavior of nonlinear fluid viscous dampers for control of shock vibrations

Abstract Fluid viscous dampers have been widely used for suppression of high velocity shocks. While linear fluid viscous dampers have been used for a long time, nonlinear fluid viscous dampers show considerable promise due to their superior energy dissipation characteristics and significant reduction in the damper force compared to a linear fluid viscous damper for the same peak displacement. This paper presents results from experimental study to characterize fluid viscous dampers when subjected to half-cycle sine shock excitation. The mathematical formulation and a numerical study to evaluate the relative performance of structures with fluid viscous dampers subjected to short-duration shock (impulse) loading are also discussed. The influence of damper nonlinearity (α) and the supplemental damping ratio (ξsd) on response has been investigated. The supplemental damping ratio of nonlinear fluid viscous dampers when subjected to shock excitation is found by equivalent linearization using the concept of equal energy dissipation. The paper also presents some design charts, which can be used for preliminary decisions on parameters of nonlinear dampers to be used in design.