Limit theorems for empirical Fr\'echet means of independent and non-identically distributed manifold-valued random variables
暂无分享,去创建一个
[1] M. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .
[2] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[3] R. Rao,et al. Normal Approximation and Asymptotic Expansions , 1976 .
[4] H. Karcher. Riemannian center of mass and mollifier smoothing , 1977 .
[5] H. Ziezold. On Expected Figures and a Strong Law of Large Numbers for Random Elements in Quasi-Metric Spaces , 1977 .
[6] H. Teicher,et al. Probability theory: Independence, interchangeability, martingales , 1978 .
[7] Patrick Billingsley,et al. Probability and Measure. , 1986 .
[8] W. Kendall. Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .
[9] Stochastic Analysis: Convex geometry and nonconfluent Γ-martingales I: tightness and strict convexity , 1991 .
[10] W. Kendall. Convexity and the Hemisphere , 1991 .
[11] Torsten Bohlin,et al. Large-sample theory , 1991 .
[12] W. Kendall. The Propeller: A Counterexample to a Conjectured Criterion for the Existence of Certain Convex Functions , 1992 .
[13] W. Kendall. Convex geometry and nonconfluent γ-martingales II: well-posedness and γ-martingale convergence , 1992 .
[14] H. Ziezold,et al. Mean Figures and Mean Shapes Applied to Biological Figure and Shape Distributions in the Plane , 1994 .
[15] J. Picard. Barycentres et martingales sur une variété , 1994 .
[16] Wilfrid S. Kendall,et al. Riemannian barycentres and geodesic convexity , 1999, Mathematical Proceedings of the Cambridge Philosophical Society.
[17] H. Le,et al. Locating Fréchet means with application to shape spaces , 2001, Advances in Applied Probability.
[18] C. Villani. Topics in Optimal Transportation , 2003 .
[19] R. Bhattacharya,et al. LARGE SAMPLE THEORY OF INTRINSIC AND EXTRINSIC SAMPLE MEANS ON MANIFOLDS—II , 2003 .
[20] H. Le,et al. Estimation of Riemannian Barycentres , 2004 .
[21] R. Bhattacharya,et al. Large sample theory of intrinsic and extrinsic sample means on manifolds--II , 2005, math/0507423.
[22] S. Chatterjee. A NEW METHOD OF NORMAL APPROXIMATION , 2006, math/0611213.
[23] A. D. Barbour,et al. Small counts in the infinite occupancy scheme , 2008, 0809.4387.
[24] R. Bhattacharya,et al. Statistics on Riemannian manifolds: asymptotic distribution and curvature , 2008 .
[25] Wilfrid S. Kendall. Statistical shape theory , 2010 .
[26] B. Afsari. Riemannian Lp center of mass: existence, uniqueness, and convexity , 2011 .
[27] J. Norris. Appendix: probability and measure , 1997 .
[28] A. Röllin,et al. Stein’s method in high dimensions with applications , 2011, 1101.4454.