GSHMC: An efficient method for molecular simulation

The hybrid Monte Carlo (HMC) method is a popular and rigorous method for sampling from a canonical ensemble. The HMC method is based on classical molecular dynamics simulations combined with a Metropolis acceptance criterion and a momentum resampling step. While the HMC method completely resamples the momentum after each Monte Carlo step, the generalized hybrid Monte Carlo (GHMC) method can be implemented with a partial momentum refreshment step. This property seems desirable for keeping some of the dynamic information throughout the sampling process similar to stochastic Langevin and Brownian dynamics simulations. It is, however, ultimate to the success of the GHMC method that the rejection rate in the molecular dynamics part is kept at a minimum. Otherwise an undesirable Zitterbewegung in the Monte Carlo samples is observed. In this paper, we describe a method to achieve very low rejection rates by using a modified energy, which is preserved to high-order along molecular dynamics trajectories. The modified energy is based on backward error results for symplectic time-stepping methods. The proposed generalized shadow hybrid Monte Carlo (GSHMC) method is applicable to NVT as well as NPT ensemble simulations.

[1]  Ernst Hairer,et al.  The life-span of backward error analysis for numerical integrators , 1997 .

[2]  S. Reich Backward Error Analysis for Numerical Integrators , 1999 .

[3]  Scott S. Hampton,et al.  Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules , 2004 .

[4]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[5]  Heermann,et al.  Hybrid Monte Carlo method for condensed-matter systems. , 1992, Physical review. B, Condensed matter.

[6]  Brian E. Moore,et al.  Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.

[7]  Jean-Raymond Abrial,et al.  On B , 1998, B.

[8]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[9]  B. Matthews,et al.  Crystallographic determination of the mode of binding of oligosaccharides to T4 bacteriophage lysozyme: implications for the mechanism of catalysis. , 1981, Journal of molecular biology.

[10]  A. Horowitz A generalized guided Monte Carlo algorithm , 1991 .

[11]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[12]  Graham Richards,et al.  Intermolecular forces , 1978, Nature.

[13]  B. Matthews,et al.  Structural basis of the conversion of T4 lysozyme into a transglycosidase by reengineering the active site. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Broomhead,et al.  The dynamics of numerics and the numerics of dynamics , 1992 .

[15]  A. Kennedy,et al.  Cost of the Generalised Hybrid Monte Carlo Algorithm for Free Field Theory , 2000, hep-lat/0008020.

[16]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[17]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[18]  Robert D. Skeel,et al.  Practical Construction of Modified Hamiltonians , 2001, SIAM J. Sci. Comput..

[19]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[20]  B. Matthews,et al.  Structure-based design of a lysozyme with altered catalytic activity , 1995, Nature Structural Biology.

[21]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[22]  B. Matthews,et al.  A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme. , 1993, Science.

[23]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[24]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .

[25]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[26]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[27]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[28]  Juan J. de Pablo,et al.  Constant pressure hybrid Molecular Dynamics-Monte Carlo simulations , 2002 .

[29]  L. Hardy,et al.  Reexamination of the role of Asp20 in catalysis by bacteriophage T4 lysozyme. , 1991, Biochemistry.

[30]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[31]  M. Karplus,et al.  Stochastic boundary conditions for molecular dynamics simulations of ST2 water , 1984 .

[32]  Jin Qi-nian Applications of the Modified Discrepancy Principle to Tikhonov Regularization of Nonlinear Ill-Posed Problems , 1999 .

[33]  Sourendu Gupta,et al.  The acceptance probability in the hybrid Monte Carlo method , 1990 .

[34]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[35]  G. Benettin,et al.  On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .

[36]  J. Douglas Faires,et al.  Study Guide for Numerical Analysis , 2005 .

[37]  Tamar Schlick,et al.  New Algorithms for Macromolecular Simulation , 2006 .

[38]  Tamar Schlick,et al.  New Algorithms for Macromolecular Simulation (Lecture Notes in Computational Science and Engineering) , 2006 .