Friction Stir Spot Welding

The friction stir welding process was developed in 1991 by The Welding Institute (TWI) for joining aluminum alloys (Thomas 1991) and subsequently the process has been used during joining of titanium, magnesium, zinc and copper alloys, and steel, in thicknesses ranging from 1 to 50 mm (Thomas, Threadgill, and Nicholas 1999; Nagasawa et al. 2000; Fukuda 2001; Cederqvist and Andrews 2004; Reynolds, Hood, and Tang 2005). The process involves plunging a rotating tool consisting of a cylindrical shoulder and protruding pin and traversing the tool across two pieces to be joined. Figure 8.1 shows a schematic of the friction stir welding process employed in producing a buttwelded section. It has been suggested that a combination of frictional heating, plastic deformation, and viscous dissipation produces temperatures in the stir zone that approach the solidus temperature. The stir zone region of aluminum alloy friction stir seam welds comprises a fine, equiaxed grain microstructure. A thermomechanically affected zone (TMAZ) formed adjacent to the stir zone contains elongated base metal grains and a partially recrystallized grain structure as a result of the thermal and stress/strain cycle, which is CoNTENTS

[1]  A. Gerlich,et al.  Energy Generation and Stir Zone Dimensions in Friction Stir Spot Welds , 2006 .

[2]  R. Mishra,et al.  Effect of Welding Parameters on Properties of 5052 Al Friction Stir Spot Welds , 2006 .

[3]  S. Nowotny,et al.  Advanced laser technology applied to cladding and buildup , 2007 .

[4]  Hartmut Zefferer,et al.  Guidelines for laser welding of sheet metal , 2005 .

[5]  Dung-An Wang,et al.  Microstructures and failure mechanisms of friction stir spot welds of aluminum 6061-T6 sheets , 2007 .

[6]  Motomichi Yamamoto,et al.  Local melting and tool slippage during friction stir spot welding of Al-alloys , 2008 .

[7]  Thomas H. North,et al.  Friction Stir Spot Welding of Aluminum and Magnesium Alloy Sheets , 2005 .

[8]  Jwo Pan,et al.  Fracture and Fatigue Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 6111-T4 Sheets , 2005 .

[9]  John Mortimer Jaguar "Roadmap" rethinks self-piercing technology , 2005, Ind. Robot.

[10]  Thomas H. North,et al.  Energy utilisation and generation during friction stir spot welding , 2006 .

[11]  Tsung-Yu Pan,et al.  Friction Stir Spot Welding of Advanced High-Strength Steels - A Feasibility Study , 2005 .

[12]  Casey D. Allen,et al.  Evaluation of Friction Spot Welds in Aluminum Alloys , 2005 .

[13]  S. Tanioka,et al.  Spot Friction Welding of Aluminum to Steel , 2007 .

[14]  G. Verhaeghe The fiber laser: A newcomer for material welding and cutting , 2005 .

[15]  Dirk Petring One head does it all , 2005 .

[16]  Motomichi Yamamoto,et al.  Effect of welding parameters on the strain rate and microstructure of friction stir spot welded 2024 aluminum alloy , 2007 .

[17]  W. A. Kaysser,et al.  Surface Modifications in Aerospace Applications , 2001 .

[18]  Jwo Pan,et al.  Microstructures and Failure Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 5754 Sheets , 2005 .

[19]  Thomas H. North,et al.  Tool penetration during friction stir spot welding of Al and Mg alloys , 2005 .

[20]  T Fukuda Friction stir welding (FSW) process , 2001 .

[21]  Hiroyuki Kokawa,et al.  Microstructural analysis of stir zone of Al alloy produced by friction stir spot welding , 2008 .

[22]  K. Shinozaki,et al.  Cracking in the stir zones of Mg-alloy friction stir spot welds , 2007 .

[23]  W. Penn Laser Cladding Basics : Drivers for the laser cladding process include laser beam characteristics, filler material, base material, and thermal properties of the part , 2008 .

[24]  Thomas H. North,et al.  Strain Rates and Grain Growth in Al 5754 and Al 6061 Friction Stir Spot Welds , 2007 .

[25]  K. Shinozaki,et al.  Mechanism of cracking in AZ91 friction stir spot welds , 2007 .

[26]  H. J. McQueen,et al.  Constitutive analysis in hot working , 2002 .

[27]  N. Enzinger,et al.  Friction Stir Spot Welds between Aluminium and Steel Automotive Sheets: Influence of Welding Parameters on Mechanical Properties and Microstructure , 2009 .

[28]  M. W. Mahoney,et al.  Properties of friction-stir-welded 7075 T651 aluminum , 1998 .

[29]  Steven R. Webber,et al.  Real-time control of laser-hybrid welding using weld quality attributes , 2004 .

[30]  J. Pan,et al.  Failure modes and fatigue life estimations of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets. Part 1: Welds made by a concave tool , 2008 .

[31]  T. Pan Friction Stir Spot Welding (FSSW) - A Literature Review , 2007 .

[32]  Scott F. Miller,et al.  Experimental study of joint performance in spot friction welding of 6111-T4 aluminium alloy , 2008 .

[33]  Murray W. Mahoney,et al.  Effects of friction stir welding on microstructure of 7075 aluminum , 1997 .

[34]  Robert P. Mudge,et al.  Laser engineered net shaping advances additive manufacturing and repair , 2007 .

[35]  M. Piacentini,et al.  On the influence of tool path in friction stir spot welding of aluminum alloys , 2008 .

[36]  Michael L Santella,et al.  Friction stir spot welding of hot-stamped boron steel , 2007 .

[37]  Holger Schlueter,et al.  Laser beam welding : Benefits, strategies, and applications , 2007 .

[38]  Anthony P. Reynolds,et al.  Texture in friction stir welds of Timetal 21S , 2005 .

[39]  Birgit Skrotzki,et al.  Characterization of a friction-stir-welded aluminum alloy 6013 , 2002 .

[40]  A. Gerlich,et al.  Formation and retention of local melted films in AZ91 friction stir spot welds , 2007 .

[41]  Rajiv S. Mishra,et al.  Friction Stir Welding and Processing , 2007 .

[42]  Jwo Pan,et al.  Fatigue Failures of Spot Friction Welds in Aluminum 6111-T4 Sheets Under Cyclic Loading Conditions , 2006 .

[43]  Chris Kramer,et al.  BP Modernizes U.S. Refinery , 2010 .

[44]  Hiroyuki Kokawa,et al.  Microstructural evolution of 6063 aluminum during friction-stir welding , 1999 .

[45]  A. Gerlich,et al.  Stir zone microstructure and strain rate during Al 7075-T6 friction stir spot welding , 2006 .

[46]  J. Defalco Practical applications for hybrid laser welding , 2007 .

[47]  Y. Zhou,et al.  Experimental simulation of surface pitting of degraded electrodes in resistance spot welding of aluminium alloys , 2004 .

[48]  G. M. Eboo,et al.  Arc augmented laser welding , 1979 .

[49]  A. Gerlich,et al.  Material flow during friction stir spot welding , 2006 .

[50]  Kevin Klingbeil What you need to know about remote laser welding , 2006 .

[51]  Jesper Henri Hattel,et al.  Thermal modelling of friction stir welding , 2008 .

[52]  J. Robson,et al.  Modelling of heterogeneous precipitate distribution evolution during friction stir welding process , 2006 .

[53]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[54]  Rajiv S. Mishra,et al.  Microstructural investigation of friction stir welded 7050-T651 aluminium , 2003 .

[55]  Michael L Santella,et al.  Structure–properties relations in spot friction welded (also known as friction stir spot welded) 6111 aluminum , 2006 .

[56]  A. Kelly,et al.  Strengthening methods in crystals , 1971 .

[57]  T. North,et al.  Numerical model for steady-state flow in friction welding , 1997 .

[58]  W. M. Thomas,et al.  Friction Stir Butt Welding , 1991 .

[59]  Jwo Pan,et al.  Microstructures and Failure Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 6111-T4 Sheets , 2004 .

[60]  A. Gerlich,et al.  Resistance and friction stir spot welding of DP600: A comparative study , 2007 .

[61]  Herbert Staufer,et al.  Laser hybrid welding in the automotive industry , 2007 .

[62]  Jeff L. Dulaney,et al.  The Air Force Manufacturing Technology Laser Peening Initiative , 2002 .