Predictive robot control with neural networks

For a target tracking task, the hand-held camera of the anthropomorphic OSCAR-robot manipulator has to track an object which moves arbitrarily on a table. The desired camera-joint mapping is approximated by a feedforward neural network. Through the use of time derivatives of the position of the object and of the manipulator, the controller can inherently predict the next position of the moving target object. In this paper severaìpredictive' controllers are proposed, and successfully applied to track a moving object.