Application of optical flow to sonar image for mobile robot navigation

In this paper, a novel data processing algorithm for ultrasonic sensors is proposed using optical flow technique to get relative velocity of obstacles. Ultrasonic sensors are widely applied to robotic system, however, limitations exist for positioning objectpsilas location by angular uncertainty. Collision avoidance in dynamic environment requires the information of relative motion, such as velocity for obstacles in addition to distance. To assist operatorpsilas control skills, a force is generated for collision avoidance using ultrasonic sensorspsila data. Previous research on the generation algorithm of force reflection used relative distance between robot and obstacles. We applied optical flow technique to artificial image sequence which is generated from ultrasonic sensorpsilas range data to obtain relative velocity. The experimental results show the effectiveness of the proposed algorithm for robot navigation in dynamic environment.

[1]  B. Maqueira,et al.  Application of ultrasonic sensors to robotic seam tracking , 1989, IEEE Trans. Robotics Autom..

[2]  Myung Jin Chung,et al.  A method of acoustic landmark extraction for mobile robot navigation , 1996, IEEE Trans. Robotics Autom..

[3]  Peter Veelaert,et al.  Ultrasonic potential field sensor for obstacle avoidance , 1999, IEEE Trans. Robotics Autom..

[4]  Herbert Peremans,et al.  A high-resolution sensor based on tri-aural perception , 1993, IEEE Trans. Robotics Autom..

[5]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[6]  D. Bank A novel ultrasonic sensing system for autonomous mobile systems , 2002 .

[7]  J. F. Vega-Riveros,et al.  Review of motion analysis techniques , 1989 .

[8]  G. Honderd,et al.  Development of an autonomous cow-milking robot control system , 1990, IEEE Control Systems Magazine.

[9]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[10]  Keiji Nagatani,et al.  The arc-transversal median algorithm: a geometric approach to increasing ultrasonic sensor azimuth accuracy , 2003, IEEE Trans. Robotics Autom..

[11]  Shraga Shoval,et al.  NavBelt and the Guide-Cane [obstacle-avoidance systems for the blind and visually impaired] , 2003, IEEE Robotics Autom. Mag..

[12]  Shraga Shoval,et al.  NavBelt and the guideCane , 2003 .

[13]  Pradeep K. Khosla,et al.  Real-time obstacle avoidance using harmonic potential functions , 1991, IEEE Trans. Robotics Autom..

[14]  Yoram Koren,et al.  Error eliminating rapid ultrasonic firing for mobile robot obstacle avoidance , 1995, IEEE Trans. Robotics Autom..

[15]  H. Schweinzer,et al.  Localization of object edges in arbitrary spatial positions based on ultrasonic data , 2006, IEEE Sensors Journal.

[16]  José Luis Lázaro,et al.  Integral system for assisted mobility , 2000, Inf. Sci..

[17]  Manuel Mazo,et al.  An integral system for assisted mobility [automated wheelchair] , 2001, IEEE Robotics Autom. Mag..

[18]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[19]  Yoram Koren,et al.  Histogramic in-motion mapping for mobile robot obstacle avoidance , 1991, IEEE Trans. Robotics Autom..