Common component analysis for multiple covariance matrices

We consider the problem of finding a suitable common low dimensional subspace for accurately representing a given set of covariance matrices. With one covariance matrix, this is principal component analysis (PCA). For multiple covariance matrices, we term the problem Common Component Analysis (CCA). While CCA can be posed as a tensor decomposition problem, standard approaches to tensor decompositions have two critical issues: (i) tensor decomposition methods are iterative and rely on the initialization; (ii) for a given level of approximation error, it is difficult to choose a suitable low dimensionality. In this paper, we present a detailed analysis of CCA that yields an effective initialization and iterative algorithms for the problem. The proposed methodology has provable approximation guarantees w.r.t. the global maximum and also allows one to choose the dimensionality for a given level of approximation error. We also establish conditions under which the methodology will achieve the global maximum. We illustrate the effectiveness of the proposed method through extensive experiments on synthetic data as well as on two real stock market datasets, where major financial events can be visualized in low dimensions.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  B. Flury Common Principal Components in k Groups , 1984 .

[3]  P. Kroonenberg Applied Multiway Data Analysis , 2008 .

[4]  D L Streiner,et al.  An Introduction to Multivariate Statistics , 1993, Canadian journal of psychiatry. Revue canadienne de psychiatrie.

[5]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[6]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[7]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[8]  Robert E. Schapire,et al.  Algorithms for portfolio management based on the Newton method , 2006, ICML.

[9]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[10]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[11]  B. Flury Common Principal Components and Related Multivariate Models , 1988 .

[12]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[13]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[14]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[15]  Sanjoy Dasgupta,et al.  Experiments with Random Projection , 2000, UAI.

[16]  Yoram Singer,et al.  On‐Line Portfolio Selection Using Multiplicative Updates , 1998, ICML.

[17]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[18]  Tamara G. Kolda,et al.  Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..

[19]  C. Ding,et al.  Two-Dimensional Singular Value Decomposition ( 2 DSVD ) for 2 D Maps and Images , 2005 .

[20]  R. Engle Dynamic Conditional Correlation , 2002 .

[21]  Long Kang,et al.  Volatility and time series econometrics: essays in honor of Robert Engle , 2011 .

[22]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[23]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[24]  Jieping Ye,et al.  Generalized Low Rank Approximations of Matrices , 2004, Machine Learning.

[25]  Gene H. Golub,et al.  Matrix computations , 1983 .

[26]  Kohji Fukunaga,et al.  Introduction to Statistical Pattern Recognition-Second Edition , 1990 .

[27]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[28]  J. Patz,et al.  Impact of regional climate change on human health , 2005, Nature.

[29]  W. Marsden I and J , 2012 .

[30]  Jan de Leeuw,et al.  Majorization Methods in Statistics , 2011 .

[31]  T. Cover Universal Portfolios , 1996 .

[32]  Jimeng Sun,et al.  Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.

[33]  David A. Landgrebe,et al.  Covariance estimation with limited training samples , 1999, IEEE Trans. Geosci. Remote. Sens..

[34]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[35]  Paskalis Glabadanidis,et al.  Risk Premia and the Dynamic Covariance between Stock and Bond Returns , 2003, Journal of Financial and Quantitative Analysis.

[36]  Chris H. Q. Ding,et al.  2-Dimensional Singular Value Decomposition for 2D Maps and Images , 2005, SDM.

[37]  Jiawei Han,et al.  Subspace Learning Based on Tensor Analysis , 2005 .

[38]  Dimitris Achlioptas,et al.  Database-friendly random projections , 2001, PODS.

[39]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[40]  Tamara G. Kolda,et al.  Higher-order Web link analysis using multilinear algebra , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[41]  M. Pourahmadi,et al.  Simultaneous modelling of the Cholesky decomposition of several covariance matrices , 2007 .