Holographic dispersal and recovery of information

A simple scheme for dispersal and recovery of digital information based on the discrete Fourier transform is discussed. The author presents a different implementation of M.O. Rabin's (J. ACM, vol.36, no.2, p.335-48, Apr. 1989) scheme, whose recovery cost is O(log m+k) operations per character, assuming m= Theta (n); for example, when k= Theta (log n), this cost drops from O(m) to O(log m) per character. Since the implementation is based on the Fourier transform, it is termed holographic. >

[1]  I. M. Jacobs,et al.  Principles of Communication Engineering , 1965 .

[2]  M. M. Miller,et al.  Fundamentals of Quantum Optics , 1968 .

[3]  R. Gallager Information Theory and Reliable Communication , 1968 .

[4]  C. Helstrom Quantum detection and estimation theory , 1969 .

[5]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[6]  G. Lindblad Entropy, information and quantum measurements , 1973 .

[7]  V. P. Belavkin,et al.  Optimum distinction of non-orthogonal quantum signals , 1975 .

[8]  Robert S. Kennedy,et al.  Optimum testing of multiple hypotheses in quantum detection theory , 1975, IEEE Trans. Inf. Theory.

[9]  Roman S. Ingarden,et al.  Quantum information theory , 1976 .

[10]  H. Yuen Two-photon coherent states of the radiation field , 1976 .

[11]  Robert J. McEliece,et al.  The Theory of Information and Coding , 1979 .

[12]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part I: Quantum-state propagation and quantum-noise , 1978, IEEE Trans. Inf. Theory.

[13]  E. B. Davies,et al.  Information and quantum measurement , 1978, IEEE Trans. Inf. Theory.

[14]  Jeffrey H. Shapiro On the near-optimum binary coherent-state receiver (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[15]  Donald L. Snyder,et al.  Some implications of the cutoff-rate criterion for coded direct-detection optical communication systems , 1980, IEEE Trans. Inf. Theory.

[16]  John R. Pierce,et al.  The capacity of the photon counting channel , 1981, IEEE Trans. Inf. Theory.

[17]  J. L. Massey,et al.  Capacity, Cutoff Rate, and Coding for a Direct-Detection Optical Channel , 1981, IEEE Trans. Commun..

[18]  Robert J. McEliece,et al.  Practical codes for photon communication , 1981, IEEE Trans. Inf. Theory.

[19]  J. Lesh,et al.  Optical communications research program to demonstrate 2.5 bits/detected photon , 1982, IEEE Communications Magazine.

[20]  M. Partovi Entropic formulation of uncertainty for quantum measurements , 1983 .

[21]  Masanori Ohya,et al.  On compound state and mutual information in quantum information theory , 1983, IEEE Trans. Inf. Theory.

[22]  M. Charbit,et al.  Capacity and Cut-off Rate for Optical Communication Systems Using Photon-Counting Techniques , 1984 .

[23]  J. Shapiro Quantum noise and excess noise in optical homodyne and heterodyne receivers , 1985 .

[24]  M. Charbit,et al.  Cut-off rate performance for phase shift keying modulated coherent states , 1987 .

[25]  Michael O. Rabin,et al.  Efficient dispersal of information for security, load balancing, and fault tolerance , 1989, JACM.

[26]  Carl W. Helstrom,et al.  Cutoff rate for the M-ary PSK modulation channel with optimal quantum detection , 1989, IEEE Trans. Inf. Theory.