Improving DAC resolution in closed-loop control of precision mechatronic systems using dithering

The resolution of precision mechatronic systems is fundamentally limited by the the noise and distortion performance of digital-to-analog converters. The sources of noise and distortion include quantization error, non-linearity, thermal noise, and semiconductor noise. In precision control applications, the primary limitation is harmonic distortion due to quantization and element mismatch. In this article, quantization noise and harmonic distortion are reduced by combinations of small noise dithers and large high-frequency periodic dithers. Theoretical predictions are confirmed experimentally on a closed-loop nanopositioning system. The results show reasonable correspondence to simulation and a significant reduction in noise due to quantization and element mismatch.

[1]  John Vanderkooy,et al.  A theory of nonsubtractive dither , 2000, IEEE Trans. Signal Process..

[2]  John Vanderkooy,et al.  Quantization and Dither: A Theoretical Survey , 1992 .

[3]  L. Schuchman Dither Signals and Their Effect on Quantization Noise , 1964 .

[4]  A. Sripad,et al.  A necessary and sufficient condition for quantization errors to be uniform and white , 1977 .

[5]  Paul Horowitz,et al.  The Art of Electronics , 1980 .

[6]  Andrew J. Fleming,et al.  Design, Modeling and Control of Nanopositioning Systems , 2014 .

[7]  W. Groeneveld,et al.  A self calibration technique for monolithic high-resolution D/A converters , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[8]  Jan Tommy Gravdahl,et al.  Adaptive feed-forward hysteresis compensation for piezoelectric actuators. , 2012, The Review of scientific instruments.

[9]  Matthias Frey,et al.  On the Static Resolution of Digitally Corrected Analog-to-Digital and Digital-to-Analog Converters With Low-Precision Components , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Gabor C. Temes,et al.  Digitally corrected multi-bit Sigma Delta data converters , 1989, IEEE International Symposium on Circuits and Systems,.

[11]  Karl Henrik Johansson,et al.  Averaging of nonsmooth systems using dither , 2006, Autom..

[12]  S. Mossaheb Application of a method of averaging to the study of dithers in non-linear systems , 1983 .

[13]  I. Galton,et al.  A rigorous error analysis of D/A conversion with dynamic element matching , 1995 .

[14]  John N. Tsitsiklis,et al.  Introduction to Probability , 2002 .

[15]  G. Zames,et al.  Dither in nonlinear systems , 1976 .

[16]  A.J. Fleming Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control , 2010, IEEE/ASME Transactions on Mechatronics.

[17]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[18]  Andrew J. Fleming,et al.  Improving Digital-to-Analog Converter Linearity by Large High-Frequency Dithering , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[20]  Kristin Y. Pettersen,et al.  Damping and Tracking Control Schemes for Nanopositioning , 2014, IEEE/ASME Transactions on Mechatronics.

[21]  R. Oldenburger,et al.  Effects of Extra Sinusoidal Inputs to Nonlinear Systems , 1962 .

[22]  Ian Galton,et al.  Why Dynamic-Element-Matching DACs Work , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[23]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[24]  B. Widrow,et al.  Statistical theory of quantization , 1996 .

[25]  Andrew J. Fleming,et al.  High‐speed serial‐kinematic SPM scanner: design and drive considerations , 2009 .

[26]  H. Hall RC Networks with Single-Component Frequency Control , 1955 .

[27]  Rudy J. van de Plassche,et al.  Dynamic element matching for high-accuracy monolithic D/A converters , 1976 .

[28]  André Preumont,et al.  Vibration Control of Active Structures: An Introduction , 2018 .

[29]  R. Sallen,et al.  A practical method of designing RC active filters , 1955, IRE Transactions on Circuit Theory.