Controllable Medical Image Generation via Generative Adversarial Networks

Fast track article for IS&T International Symposium on Electronic Imaging 2021: Human Vision and Electronic Imaging 2021 proceedings.

[1]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[3]  A. Soliman,et al.  Author Biography , 2018, Understanding Language Use in the Classroom.

[4]  Isabel Gauthier,et al.  Individual differences in perceptual abilities in medical imaging: the Vanderbilt Chest Radiograph Test , 2017, Cognitive Research: Principles and Implications.

[5]  Deli Zhao,et al.  In-Domain GAN Inversion for Real Image Editing , 2020, ECCV.

[6]  Serge J. Belongie,et al.  Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[7]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[8]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[9]  Leon A. Gatys,et al.  Texture Synthesis Using Convolutional Neural Networks , 2015, NIPS.

[10]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[11]  Sargur N. Srihari,et al.  Properties of Binary Vector Dissimilarity Measures , 2003 .

[12]  Taesung Park,et al.  Semantic Image Synthesis With Spatially-Adaptive Normalization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Peter Hardy,et al.  Perceptual and Interpretive Error in Diagnostic Radiology-Causes and Potential Solutions. , 2019, Academic radiology.

[14]  Dimitrios Korkinof,et al.  High-Resolution Mammogram Synthesis using Progressive Generative Adversarial Networks , 2018, ArXiv.

[15]  Richard H. Moore,et al.  THE DIGITAL DATABASE FOR SCREENING MAMMOGRAPHY , 2007 .

[16]  Jeff Donahue,et al.  Large Scale GAN Training for High Fidelity Natural Image Synthesis , 2018, ICLR.

[17]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[18]  Árni Kristjánsson,et al.  Serial dependence in a simulated clinical visual search task , 2019, Scientific Reports.

[19]  M. Lungren,et al.  Preparing Medical Imaging Data for Machine Learning. , 2020, Radiology.

[20]  Yoshua Bengio,et al.  Feature-wise transformations , 2018, Distill.

[21]  Bolei Zhou,et al.  Seeing What a GAN Cannot Generate , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[22]  Stephen M. Moore,et al.  TCIA: An information resource to enable open science , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[23]  Sohil H. Patel,et al.  Heuristics and Cognitive Error in Medical Imaging. , 2018, AJR. American journal of roentgenology.

[24]  David Whitney,et al.  Serial dependence determines object classification in visual search , 2017 .

[25]  Jonathon Shlens,et al.  A Learned Representation For Artistic Style , 2016, ICLR.

[26]  Leon A. Gatys,et al.  A Neural Algorithm of Artistic Style , 2015, ArXiv.