Scaling Phononic Quantum Networks of Solid-State Spins with Closed Mechanical Subsystems

Phononic quantum networks feature distinct advantages over photonic networks for on-chip quantum communications, providing a promising platform for developing quantum computers with robust solid-state spin qubits. Large mechanical networks including one-dimensional chains of trapped ions, however, have inherent and well-known scaling problems. In addition, chiral phononic processes, which are necessary for conventional phononic quantum networks, are difficult to implement in a solid-state system. To overcome these seemingly unsolvable obstacles, we have developed a new network architecture that breaks a large mechanical network into small and closed mechanical subsystems. This architecture is implemented in a diamond phononic nanostructure featuring alternating phononic crystal waveguides with specially-designed bandgaps. The implementation also includes nanomechanical resonators coupled to color centers through phonon-assisted transitions as well as quantum state transfer protocols that can be robust against the thermal environment.

[1]  Optical wavelength conversion via optomechanical coupling in a silica resonator , 2012, 1205.2360.

[2]  E. R. MacQuarrie,et al.  Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction , 2016, Nature Communications.

[3]  Aroosa Ijaz,et al.  Optical and microwave control of germanium-vacancy center spins in diamond , 2016, 1612.02947.

[4]  Marko Loncar,et al.  Strain engineering of the silicon-vacancy center in diamond , 2018, Physical Review B.

[5]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[6]  Aashish A. Clerk,et al.  Using dark modes for high-fidelity optomechanical quantum state transfer , 2012, 1205.5284.

[7]  P. Zoller,et al.  A quantum spin transducer based on nanoelectromechanical resonator arrays , 2009, 0908.0316.

[8]  S. Bennett,et al.  Phonon cooling and lasing with nitrogen-vacancy centers in diamond , 2013, 1306.5915.

[9]  Ying-Dan Wang,et al.  Using interference for high fidelity quantum state transfer in optomechanics. , 2011, Physical review letters.

[10]  M. Markham,et al.  Coherent optical transitions in implanted nitrogen vacancy centers. , 2014, Nano letters.

[11]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[12]  I. Mahboob,et al.  Phonon waveguides for electromechanical circuits. , 2014, Nature nanotechnology.

[13]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[14]  P. Appel,et al.  Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. , 2014, Physical review letters.

[15]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[16]  J. Ignacio Cirac,et al.  High-fidelity hot gates for generic spin-resonator systems , 2016, 1607.01614.

[17]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[18]  Mikhail D. Lukin,et al.  Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation , 2015, 1512.03820.

[19]  Hailin Wang,et al.  Optomechanical interfaces for hybrid quantum networks , 2015 .

[20]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit interactions of light , 2015, Nature Photonics.

[21]  Ronald L. Walsworth,et al.  Atom-like crystal defects: From quantum computers to biological sensors , 2014 .

[22]  Marko Lonvcar,et al.  Diamond optomechanical crystals , 2015 .

[23]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[24]  Oskar Painter,et al.  Proposal for an optomechanical traveling wave phonon–photon translator , 2010, 1009.3529.

[25]  P. Zoller,et al.  Quantum State Transfer via Noisy Photonic and Phononic Waveguides. , 2016, Physical review letters.

[26]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[27]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[28]  Luming Duan,et al.  Colloquium: Quantum networks with trapped ions , 2010 .

[29]  Mikhail D Lukin,et al.  Controlling the coherence of a diamond spin qubit through its strain environment , 2017, Nature Communications.

[30]  Mihir K. Bhaskar,et al.  An integrated diamond nanophotonics platform for quantum-optical networks , 2016, Science.

[31]  M. K. Bhaskar,et al.  An integrated diamond nanophotonics platform for quantum-optical networks , 2016, Science.

[32]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[33]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[34]  Hailin Wang,et al.  Optomechanical quantum control of a nitrogen vacancy center in diamond , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[35]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[36]  M. Lukin,et al.  Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide. , 2016, Physical review letters.

[37]  M. Plenio,et al.  Coupling of nitrogen vacancy centres in nanodiamonds by means of phonons , 2013, 1304.2192.

[38]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[39]  M. Lukin,et al.  Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides. , 2018, Physical Review Letters.

[40]  G J Milburn,et al.  Reversible optical-to-microwave quantum interface. , 2011, Physical review letters.

[41]  Zhaoyou Wang,et al.  Single-Mode Phononic Wire. , 2017, Physical review letters.

[42]  S. V. Enk,et al.  Generating robust optical entanglement in weak-coupling optomechanical systems , 2013, 1307.2844.

[43]  J. Ignacio Cirac,et al.  Universal Quantum Transducers Based on Surface Acoustic Waves , 2015, 1504.05127.

[44]  Liang Jiang,et al.  Intracity quantum communication via thermal microwave networks , 2016, 1611.10241.

[45]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[46]  F. Jelezko,et al.  Multiple intrinsically identical single-photon emitters in the solid state , 2013, Nature Communications.

[47]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[48]  Lin Tian,et al.  Adiabatic state conversion and pulse transmission in optomechanical systems. , 2011, Physical review letters.

[49]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[50]  M. Lukin,et al.  Indistinguishable photons from separated silicon-vacancy centers in diamond. , 2014, Physical review letters.

[51]  Simon C. Benjamin,et al.  One-dimensional quantum computing with a ‘segmented chain’ is feasible with today’s gate fidelities , 2017, npj Quantum Information.

[52]  Hailin Wang,et al.  Optomechanical Dark Mode , 2012, Science.

[53]  Strain coupling of a mechanical resonator to a single quantum emitter in diamond , 2016, 1603.07680.

[54]  Matthew D. Shaw,et al.  Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground-state of motion , 2015, 1503.05135.

[55]  Kevin A. Stewart,et al.  Coupling a Surface Acoustic Wave to an Electron Spin in diamond via a Dark State , 2016 .

[56]  Andreas Reiserer,et al.  Cavity-based quantum networks with single atoms and optical photons , 2014, 1412.2889.

[57]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[58]  J. G. Muga,et al.  Shortcut to adiabatic passage in two- and three-level atoms. , 2010, Physical review letters.

[59]  Marko Lonvcar,et al.  Enhanced strain coupling of nitrogen vacancy spins to nanoscale diamond cantilevers , 2015, 1511.01548.

[60]  Ya Wang,et al.  Coherence-protected quantum gate by continuous dynamical decoupling in diamond. , 2012, Physical review letters.

[61]  Mika A. Sillanpää,et al.  Multimode circuit optomechanics near the quantum limit , 2012, Nature Communications.

[62]  Dirk Englund,et al.  Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond , 2018, Applied Physics Letters.

[63]  A S Sørensen,et al.  Optomechanical transducers for long-distance quantum communication. , 2010, Physical review letters.

[64]  P. Zoller,et al.  Continuous mode cooling and phonon routers for phononic quantum networks , 2012, 1205.7008.

[65]  A. V. Gorshkov,et al.  Scalable architecture for a room temperature solid-state quantum information processor , 2010, Nature Communications.

[66]  C. Regal,et al.  From cavity electromechanics to cavity optomechanics , 2010, 1010.4056.

[67]  L. Tian,et al.  Optical wavelength conversion of quantum states with optomechanics , 2010, 1007.1687.

[68]  Aashish A. Clerk,et al.  Systematic Magnus-based approach for suppressing leakage and non-adiabatic errors in quantum dynamics , 2016, 1610.01105.

[69]  Martin V. Gustafsson,et al.  Propagating phonons coupled to an artificial atom , 2014, Science.

[70]  Hailin Wang,et al.  Protecting a solid-state spin from decoherence using dressed spin states. , 2014, Physical review letters.

[71]  F. J. Heremans,et al.  Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system , 2016, Nature Physics.

[72]  Kenneth W. Lee,et al.  Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator , 2014, Nature communications.

[73]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[74]  S. Bhave,et al.  Mechanical spin control of nitrogen-vacancy centers in diamond. , 2013, Physical review letters.

[75]  R. Blatt,et al.  Quantum information transfer using photons , 2014, Nature Photonics.

[76]  Hailin Wang,et al.  Controlling multimode optomechanical interactions via interference , 2017, 1705.04722.

[77]  Peter Zoller,et al.  Chiral quantum optics , 2016, Nature.

[78]  Qiong Chen,et al.  Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators , 2011 .

[79]  C. Regal,et al.  A phononic bandgap shield for high-Q membrane microresonators , 2013, 1312.0962.

[80]  A. Schliesser,et al.  Ultra-coherent nanomechanical resonators via soft clamping and dissipation dilution , 2016, Nature nanotechnology.