Efficient photoinduced second-harmonic generation in silicon nitride photonics

[1]  H. Tang,et al.  Pockels soliton microcomb , 2020, Nature Photonics.

[2]  T. Kippenberg,et al.  Formation Rules and Dynamics of Photoinduced χ(2) Gratings in Silicon Nitride Waveguides , 2019, ACS photonics.

[3]  John E. Bowers,et al.  Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration , 2019, Optica.

[4]  Dries Vercruysse,et al.  4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics , 2020 .

[5]  C. Roeloffzen,et al.  Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits , 2019, Photonics.

[6]  H. Tang,et al.  Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W , 2019, 1911.00083.

[7]  Chang-Ling Zou,et al.  On-chip χ(2) microring optical parametric oscillator , 2019, Optica.

[8]  Chao Tang,et al.  Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings , 2019, Optica.

[9]  K. Srinivasan,et al.  Milliwatt-threshold visible-telecom optical parametric oscillation using silicon nanophotonics. , 2019, Optica.

[10]  Susumu Noda,et al.  Ultrahigh-Q photonic crystal nanocavities based on 4H silicon carbide , 2019, Optica.

[11]  T. C. Briles,et al.  Architecture for the photonic integration of an optical atomic clock , 2019, Optica.

[12]  M. Watts,et al.  Silicon photonics optical frequency synthesizer - SPOFS , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[13]  K. Srinivasan,et al.  Efficient Telecom-to-Visible Spectral Translation Using Silicon Nanophotonics , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[14]  T. Kippenberg,et al.  Second- and third-order nonlinear wavelength conversion in an all-optically poled Si3N4 waveguide. , 2019, Optics letters.

[15]  Q. Gong,et al.  Symmetry-breaking-induced nonlinear optics at a microcavity surface , 2018, Nature Photonics.

[16]  Martin M. Fejer,et al.  Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides , 2018, Optica.

[17]  A. Boes,et al.  High Efficiency SHG in Heterogenous Integrated GaAs Ring Resonators , 2018, International Conference on Intelligent Pervasive Computing.

[18]  Zheng Gong,et al.  17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators , 2018, Applied Physics Letters.

[19]  K. Srinivasan,et al.  Self-organized nonlinear gratings for ultrafast nanophotonics , 2018, 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[20]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[21]  Qing Li,et al.  Photonic chip for laser stabilization to an atomic vapor with 10 −11 instability , 2018 .

[22]  Qiang Lin,et al.  Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide , 2018, Optica.

[23]  Maxim Karpov,et al.  Photonic chip-based soliton frequency combs covering the biological imaging window , 2017, Nature Communications.

[24]  Jesse Mak,et al.  Photo-induced second-order nonlinearity in stoichiometric silicon nitride waveguides , 2017, 1710.03010.

[25]  J. Bowers,et al.  Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. , 2017, Optics letters.

[26]  Camille-Sophie Brès,et al.  Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching , 2017, Nature Communications.

[27]  Qing Li,et al.  Stably accessing octave-spanning microresonator frequency combs in the soliton regime. , 2016, Optica.

[28]  E. Timurdogan,et al.  Electric field-induced second-order nonlinear optical effects in silicon waveguides , 2016, Nature Photonics.

[29]  H. Tang,et al.  Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency , 2016 .

[30]  Xiaoxiao Xue,et al.  Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation , 2016, Light: Science & Applications.

[31]  John E. Bowers,et al.  Thin film wavelength converters for photonic integrated circuits , 2016 .

[32]  Qing Li,et al.  Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics , 2015, Nature Photonics.

[33]  Qiang Lin,et al.  Selective engineering of cavity resonance for frequency matching in optical parametric processes , 2014, 1407.4488.

[34]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[35]  U. Levy,et al.  Nanoscale light–matter interactions in atomic cladding waveguides , 2012, Nature Communications.

[36]  M. Kauranen,et al.  Efficient second-harmonic generation in silicon nitride resonant waveguide gratings. , 2012, Optics letters.

[37]  Michal Lipson,et al.  Octave-spanning frequency comb generation in a silicon nitride chip. , 2011, Optics letters.

[38]  Michal Lipson,et al.  Harmonic generation in silicon nitride ring resonators. , 2010, Optics express.

[39]  Lute Maleki,et al.  Nonlinear optics and crystalline whispering gallery mode cavities. , 2004, Physical review letters.

[40]  M. Poulin,et al.  Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms , 2002 .

[41]  W. Margulis,et al.  Imaging the nonlinear grating in frequency-doubling fibres , 1995, Nature.

[42]  V. Sulimov,et al.  Theory of the coherent photovoltaic effect and the method of nonequilibrium Green's functions , 1992 .

[43]  Evgenii M Dianov,et al.  Problem of the photoinduced second harmonic generation in optical fibers , 1989 .

[44]  R. Stolen,et al.  Preparation of long-coherence-length second-harmonicgenerating optical fibers by using mode-locked pulses. , 1988, Optics letters.

[45]  R. Stolen,et al.  Self-organized phase-matched harmonic generation in optical fibers. , 1987, Optics letters.

[46]  R. W. Terhune,et al.  Second-harmonic generation in fibers , 1987 .

[47]  U Osterberg,et al.  Experimental studies on efficient frequency doubling in glass optical fibers. , 1987, Optics letters.

[48]  U Osterberg,et al.  Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber. , 1986, Optics letters.

[49]  R. W. Terhune,et al.  Optical Harmonic Generation in Calcite , 1962 .