Recent Trends in Descriptional Complexity of Formal Languages

Formal languages can be described by several means. A basic question is how succinctly can a descriptional system represent a formal language in comparison with other descriptional systems? What is the maximal size trade-o when changing from one system to another, and can it be achieved? Here, we select some recent trends in the descriptional complexity of formal languages and discuss the problems, results, and open questions. In particular, we present the main historical development and address the basics concepts of descriptional complexity from a general abstract perspective. Then we consider the representation by two-way finite automata, multi-head finite automata, and limited automata in more detail. Finally, we discuss a few further topics in note form. The results presented are not proved but we merely draw attention to the overall picture and some of the main ideas involved.

[1]  Burkhard Monien Two-Way Multihead Automata Over a One-Letter Alphabet , 1980, RAIRO Theor. Informatics Appl..

[2]  Carlo Mereghetti,et al.  Converting Two-Way Nondeterministic Unary Automata into Simpler Automata , 2001, MFCS.

[3]  Marek Chrobak,et al.  Errata to: "finite automata and unary languages" , 2003 .

[4]  Juraj Hromkovic,et al.  NFAs With and Without epsilon-Transitions , 2005, ICALP.

[5]  Silvio Micali,et al.  Two-Way Deterministic Finite Automata are Exponentially More Succinct Than Sweeping Automata , 1981, Inf. Process. Lett..

[6]  Andreas Malcher Descriptional Complexity of Cellular Automata and Decidability Questions , 2001, DCFS.

[7]  Yuri Lifshits A lower bound on the size of [epsiv]-free NFA corresponding to a regular expression , 2003, Inf. Process. Lett..

[8]  Martin Kutrib,et al.  Descriptional and computational complexity of finite automata - A survey , 2011, Inf. Comput..

[9]  Jan Peckel On a Deterministic Subclass of Context-Free Languages , 1977, MFCS.

[10]  Ivan Hal Sudborough,et al.  Bounded-Reversal Multihead Finite Automata Languages , 1974, Inf. Control..

[11]  Andrew Chi-Chih Yao,et al.  k+1 Heads Are Better than k , 1976, FOCS.

[12]  Thomas Wilke,et al.  Translating Regular Expressions into Small epsilon-Free Nondeterministic Finite Automata , 1997, STACS.

[13]  Carlo Mereghetti,et al.  Optimal Simulations Between Unary Automata , 1998, STACS.

[14]  Giovanni Pighizzini,et al.  Two-Way Unary Automata versus Logarithmic Space , 2010, Developments in Language Theory.

[15]  Yahiko Kambayashi,et al.  Tight bounds on the number of states of DFAs that are equivalent to n-state NFAs , 2000, Theor. Comput. Sci..

[16]  Giovanni Pighizzini,et al.  Limited Automata and Regular Languages , 2013, Int. J. Found. Comput. Sci..

[17]  Martin Kutrib The phenomenon of non-recursive trade-offs , 2004, Int. J. Found. Comput. Sci..

[18]  Sheila A. Greibach,et al.  A note on pushdown store automata and regular systems , 1967 .

[19]  Michael Domaratzki,et al.  Lower bounds for the transition complexity of NFAs , 2006, J. Comput. Syst. Sci..

[20]  Giovanni Pighizzini,et al.  Two-Way Automata Characterizations of L/poly Versus NL , 2014, Theory of Computing Systems.

[21]  Christos A. Kapoutsis Nondeterminism is essential in small two-way finite automata with few reversals , 2013, Inf. Comput..

[22]  Jeffrey Shallit,et al.  Unary Context-Free Grammars and Pushdown Automata, Descriptional Complexity and Auxiliary Space Lower Bounds , 2002, J. Comput. Syst. Sci..

[23]  FRANK R. MOORE,et al.  On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata , 1971, IEEE Transactions on Computers.

[24]  Martin Kutrib,et al.  The Size of One-Way Cellular Automata , 2010, Automata.

[25]  Andreas Malcher,et al.  Descriptional Complexity of Pushdown Store Languages , 2012, J. Autom. Lang. Comb..

[26]  Juraj Hromkovic,et al.  Nondeterminism versus Determinism for Two-Way Finite Automata: Generalizations of Sipser's Separation , 2003, ICALP.

[27]  Oscar H. Ibarra,et al.  A Note on Semilinear Sets and Bounded-Reversal Multihead Pushdown Automata , 1974, Inf. Process. Lett..

[28]  Bettina Sunckel A note on the descriptional complexity of CD grammar systems of finite index , 2005, DCFS.

[29]  Juris Hartmanis On non-determinancy in simple computing devices , 2004, Acta Informatica.

[30]  Leslie G. Valiant,et al.  Regularity and Related Problems for Deterministic Pushdown Automata , 1975, JACM.

[31]  Andreas Malcher,et al.  Descriptional complexity of two-way pushdown automata with restricted head reversals , 2011, Theor. Comput. Sci..

[32]  Martin Kutrib,et al.  Determination of finite automata accepting subregular languages , 2009, Theor. Comput. Sci..

[33]  Martin Kutrib,et al.  Size of Unary One-Way Multi-head Finite Automata , 2013, DCFS.

[34]  Martin Kutrib On the descriptional power of heads, counters, and pebbles , 2005, Theor. Comput. Sci..

[35]  Giovanni Pighizzini,et al.  Deterministic Pushdown Automata and Unary Languages , 2008, Int. J. Found. Comput. Sci..

[36]  Martin Kutrib,et al.  Cellular Automata and Language Theory , 2009, Encyclopedia of Complexity and Systems Science.

[37]  Martin Kutrib,et al.  On Measuring Non-recursive Trade-Offs , 2009, J. Autom. Lang. Comb..

[38]  Richard Edwin Stearns,et al.  A Regularity Test for Pushdown Machines , 1967, Inf. Control..

[39]  Andrew Chi-Chih Yao,et al.  K + 1 heads are better than K , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[40]  Gerd Wechsung Characterization of Some Classes of Context-Free Languages in Terms of Complexity Classes , 1975, MFCS.

[41]  Martin Kutrib,et al.  Complexity of multi-head finite automata: Origins and directions , 2011, Theor. Comput. Sci..

[42]  Piotr Berman A Note on Sweeping Automata , 1980, ICALP.

[43]  Andreas Malcher On One-Way Cellular Automata with a Fixed Number of Cells , 2003, Fundam. Informaticae.

[44]  A. R. Meyer,et al.  Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.

[45]  William J. Sakoda,et al.  Nondeterminism and the size of two way finite automata , 1978, STOC.

[46]  Martin Kutrib,et al.  The Size Impact of Little Iterative Array Resources , 2012, J. Cell. Autom..

[47]  Thomas N. Hibbard,et al.  A Generalization of Context-Free Determinism , 1967, Inf. Control..

[48]  Andreas Malcher,et al.  Sublinearly Space Bounded Iterative Arrays , 2010, Int. J. Found. Comput. Sci..

[49]  Christos A. Kapoutsis Non-recursive trade-offs for two-way machines , 2005, Int. J. Found. Comput. Sci..

[50]  Giovanni Pighizzini,et al.  Limited Automata and Context-Free Languages , 2015, Fundam. Informaticae.

[51]  Gerd Wechsung Kompliziertheitstheoretische Charakterisierung der kontextfreien und linearen Sprachen , 1976, J. Inf. Process. Cybern..

[52]  Michael Sipser,et al.  Lower bounds on the size of sweeping automata , 1979, J. Comput. Syst. Sci..

[53]  E. Landau Handbuch der Lehre von der Verteilung der Primzahlen , 1974 .

[54]  Giovanni Pighizzini,et al.  Two-Way Finite Automata: Old and Recent Results , 2012, Fundam. Informaticae.

[55]  Markus Holzer,et al.  On the average state and transition complexity of finite languages , 2007, Theor. Comput. Sci..

[56]  Andreas Malcher,et al.  A Direct Construction of Finite State Automata for Pushdown Store Languages , 2013, DCFS.

[57]  Martin Kutrib,et al.  Oblivious two-way finite automata: Decidability and complexity , 2014, Inf. Comput..

[58]  Andreas Brandstädt,et al.  A Relation Between Space, Return and Dual Return Complexities , 1979, Theor. Comput. Sci..

[59]  Martin Kutrib,et al.  States and Heads Do Count for Unary Multi-head Finite Automata , 2012, Developments in Language Theory.

[60]  Andreas Malcher On the Descriptional Complexity of Iterative Arrays , 2004, IEICE Trans. Inf. Syst..

[61]  Martin Kutrib,et al.  Descriptional Complexity - An Introductory Survey , 2010, Scientific Applications of Language Methods.

[62]  John C. Shepherdson,et al.  The Reduction of Two-Way Automata to One-Way Automata , 1959, IBM J. Res. Dev..

[63]  Sheng Yu,et al.  State Complexity of Regular Languages , 2001, J. Autom. Lang. Comb..

[64]  Andreas Malcher,et al.  Descriptional Complexity of Machines with Limited Resources , 2002, J. Univers. Comput. Sci..

[65]  Carlo Mereghetti,et al.  The size-cost of Boolean operations on constant height deterministic pushdown automata , 2012, Theor. Comput. Sci..

[66]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[67]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[68]  Giovanni Pighizzini,et al.  Two-Way Automata Making Choices Only at the Endmarkers , 2012, LATA.