Optimal 1-edge fault-tolerant designs for ladders

A graph G* is 1-edge fault-tolerant with respect to a graph G, denoted by 1-EFT(G), if every graph obtained by removing any edge from G* contains G. A 1-EFT(G) graph is optimal if it contains the minimum number of edges among all 1-EFT(G) graphs. The kth ladder graph, Lk, is defined to be the cartesian product of the Pk and P2 where Pn is the n-vertex path graph. In this paper, we present several 1-edge fault-tolerant graphs with respect to ladders. Some of these graphs are proven to be optimal.

[1]  John P. Hayes,et al.  Edge fault tolerance in graphs , 1993, Networks.

[2]  Jehoshua Bruck,et al.  On the Construction of Fault-Tolerant Cube-Connected Cycles Networks , 1991, J. Parallel Distributed Comput..

[3]  C. T. Howard Ho An Observation on the Bisectional Interconnection Networks , 1992, IEEE Trans. Computers.

[4]  Kenneth E. Batcher,et al.  Adding Multiple-Fault Tolerance to Generalized Cube Networks , 1994, IEEE Trans. Parallel Distributed Syst..

[5]  Frank Thomson Leighton Introduction to parallel algorithms and architectures: arrays , 1992 .

[6]  Jehoshua Bruck,et al.  Wildcard dimensions, coding theory and fault-tolerant meshes and hypercubes , 1993, FTCS-23 The Twenty-Third International Symposium on Fault-Tolerant Computing.

[7]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[8]  S. Louis Hakimi,et al.  On Minimum Fault-Tolerant Networks , 1993, SIAM J. Discret. Math..

[9]  Chak-Kuen Wong,et al.  Minimum k-hamiltonian graphs, II , 1986, J. Graph Theory.

[10]  Shuichi Ueno,et al.  Fault-tolerant graphs for tori , 1996, Proceedings Second International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN'96).

[11]  Lih-Hsing Hsu,et al.  1-Edge Fault-Tolerant designs for Meshes , 1994, Parallel Process. Lett..

[12]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[13]  Abdel Aziz Farrag Tolerating Faulty Edges in a Multi-Dimensional Mesh , 1994, Parallel Comput..

[14]  Koji Yamamoto,et al.  Fault-tolerant graphs for hypercubes and tori , 1995, Proceedings of the Twenty-Eighth Annual Hawaii International Conference on System Sciences.

[15]  Lih-Hsing Hsu,et al.  Faithful 1-Edge Fault Tolerant Graphs , 1997, Inf. Process. Lett..

[16]  Ting-Yi Sung,et al.  Multiple-Edge-Fault Tolerance with Respect to Hypercubes , 1997, IEEE Trans. Parallel Distributed Syst..

[17]  John P. Hayes,et al.  Optimally edge fault-tolerant trees , 1996, Networks.

[18]  Chak-Kuen Wong,et al.  Minimum K-hamiltonian graphs , 1984, J. Graph Theory.