Evaluation of Cirrus Cloud Properties Derived from MODIS Data Using Cloud Properties Derived from Ground-Based Observations Collected at the ARM SGP Site

Abstract The Moderate Resolution Imaging Spectroradiometer (MODIS) on board the NASA Terra satellite has been collecting global data since March 2000 and the one on the Aqua satellite since June 2002. In this paper, cirrus cloud properties derived from ground-based remote sensing data are compared with similar cloud properties derived from MODIS data on Terra. To improve the space–time correlation between the satellite and ground-based observations, data from a wind profiler are used to define the cloud advective streamline along which the comparisons are made. In this paper, approximately two dozen cases of cirrus are examined and a statistical approach to the comparison that relaxes the requirement that clouds occur over the ground-based instruments during the overpass instant is explored. The statistical comparison includes 168 cloudy MODIS overpasses of the Southern Great Plains (SGP) region and approximately 300 h of ground-based cirrus observations. The physical and radiative properties of cloud lay...

[1]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[2]  Robert G. Knollenberg,et al.  The Optical Array: An Alternative to Scattering or Extinction for Airborne Particle Size Determination , 1970 .

[3]  K. Liou Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective , 1986 .

[4]  M. King,et al.  Monitoring earth's vital signs. , 2000, Scientific American.

[5]  A. H. Auer,et al.  The Dimension of Ice Crystals in Natural Clouds , 1970 .

[6]  Cloud radiative forcing on surface shortwave fluxes: A case study based on Cloud Lidar and Radar Exploratory Test , 1994 .

[7]  W. Menzel,et al.  Eight Years of High Cloud Statistics Using HIRS , 1999 .

[8]  Gerald G. Mace,et al.  The Composite Characteristics of Cirrus Clouds: Bulk Properties Revealed by One Year of Continuous Cloud Radar Data , 2001 .

[9]  Andrew J. Heymsfield,et al.  Modeling Cirrus Clouds. Part I: Treatment of Bimodal Size Spectra and Case Study Analysis , 1996 .

[10]  P. Francis,et al.  Improved Measurements of the Ice Water Content in Cirrus Using a Total-Water Probe , 1995 .

[11]  G. Mace,et al.  Profiles of Low-Level Stratus Cloud Microphysics Deduced from Ground-Based Measurements , 2003 .

[12]  Paul W. Stackhouse,et al.  The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback , 1990 .

[13]  Donald P. Wylie,et al.  Comparison of the Climatologies of High-Level Clouds from HIRS and ISCCP , 1996 .

[14]  W. Menzel,et al.  Two years of cloud cover statistics using VAS. [Visible infrared spin scan radiometer Atmospheric Sounder] , 1989 .

[15]  J. Comstock,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties , 2001 .

[16]  J. Comstock,et al.  Ground‐based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts , 2002 .

[17]  J. Iaquinta,et al.  A general approach for deriving the properties of cirrus and stratiform ice cloud particles , 2002 .

[18]  W. Menzel,et al.  Four Years of Global Cirrus Cloud Statistics Using HIRS, Revised , 1994 .

[19]  Peter J. Webster,et al.  Clouds and Climate: Sensitivity of Simple Systems. , 1981 .

[20]  Steven Platnick,et al.  Remote Sensing of Liquid Water and Ice Cloud Optical Thickness and Effective Radius in the Arctic: Application of Airborne Multispectral MAS Data , 2004 .

[21]  Andrew J. Heymsfield,et al.  The Definition and Significance of an Effective Radius for Ice Clouds , 1998 .

[22]  H Herzog,et al.  Capturing greenhouse gases. , 2000, Scientific American.

[23]  M. King,et al.  Cloud Retrieval Algorithms for MODIS : Optical Thickness , Effective Particle Radius , and Thermodynamic Phase , 2000 .

[24]  Gerald G. Mace,et al.  On retrieving the microphysical properties of cirrus clouds using the moments of the millimeter-wavelength Doppler spectrum , 2002 .

[25]  T. Ackerman,et al.  Heating rates in tropical anvils , 1988 .

[26]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[27]  W. Paul Menzel,et al.  Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[28]  M. Poellot,et al.  In situ observations of contrail microphysics and implications for their radiative impact , 1999 .

[29]  David L. Mitchell,et al.  Effective Diameter in Radiation Transfer: General Definition, Applications, and Limitations , 2002 .

[30]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[31]  Andrew J. Heymsfield,et al.  Ice crystal terminal velocities. , 1972 .

[32]  Yan Chen,et al.  Global cloud database from VIRS and MODIS for CERES , 2003, SPIE Asia-Pacific Remote Sensing.

[33]  Peter J. Webster,et al.  The role of hydrological processes in ocean‐atmosphere interactions , 1994 .

[34]  Brooks E. Martner,et al.  An Unattended Cloud-Profiling Radar for Use in Climate Research , 1998 .

[35]  Patrick Minnis,et al.  Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties , 1998 .

[36]  Patrick Minnis,et al.  Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data , 1998 .

[37]  D. C. Robertson,et al.  MODTRAN: A Moderate Resolution Model for LOWTRAN , 1987 .

[38]  D. Mitchell Use of Mass- and Area-Dimensional Power Laws for Determining Precipitation Particle Terminal Velocities , 1996 .

[39]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[40]  W. Patrick Arnott,et al.  A Model Predicting the Evolution of Ice Particle Size Spectra and Radiative Properties of Cirrus Clouds. Part II: Dependence of Absorption and Extinction on Ice Crystal Morphology. , 1994 .

[41]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[42]  Bryan A. Baum,et al.  Remote Sounding of Cirrus Cloud Optical Depths and Ice Crystal Sizes from AVHRR Data: Verification Using FIRE II IFO Measurements , 1995 .

[43]  Q. Fu An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate Models , 1996 .

[44]  David L. Mitchell,et al.  A Model Predicting the Evolution of Ice Particle Size Spectra and Radiative Properties of Cirrus Clouds. Part I: Microphysics. , 1994 .

[45]  David L. Mitchell,et al.  Mass-Dimensional Relationships for Ice Particles and the Influence of Riming on Snowfall Rates , 1990 .

[46]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[47]  Andrew J. Heymsfield,et al.  A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content , 1984 .

[48]  D. Ehhalt,et al.  In situ observations , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.