About Advances in Tensor Data Denoising Methods

Tensor methods are of great interest since the development of multicomponent sensors. The acquired multicomponent data are represented by tensors, that is, multiway arrays. This paper presents advances on filtering methods to improve tensor data denoising. Channel-by-channel and multiway methods are presented. The first multiway method is based on the lower-rank truncation of the HOSVD. The second one consists of an extension of Wiener filtering to data tensors. When multiway tensor filtering is performed, the processed tensor is flattened along each mode successively, and singular value decomposition of the flattened matrix is performed. Data projection on the singular vectors associated with dominant singular values results in noise reduction. We propose a synthesis of crucial issues which were recently solved, that is, the estimation of the number of dominant singular vectors, the optimal choice of flattening directions, and the reduction of the computational load of multiway tensor filtering methods. The presented methods are compared through an application to a color image and a seismic signal, multiway Wiener filtering providing the best denoising results. We apply multiway Wiener filtering and its fast version to a hyperspectral image. The fast multiway filtering method is 29 times faster and yields very close denoising results.

[1]  Hervé Carfantan,et al.  Time-invariant orthonormal wavelet representations , 1996, IEEE Trans. Signal Process..

[2]  Salah Bourennane,et al.  Main flattening directions and Quadtree decomposition for multi-way Wiener filtering , 2007, Signal Image Video Process..

[3]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.

[4]  James C. Gee,et al.  Spatial transformations of diffusion tensor magnetic resonance images , 2001, IEEE Transactions on Medical Imaging.

[5]  Karim Abed-Meraim,et al.  Blind multichannel image restoration using subspace based method , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[6]  Gene H Golub,et al.  Reconstructing the pathways of a cellular system from genome-scale signals by using matrix and tensor computations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Demetri Terzopoulos,et al.  Multilinear independent components analysis , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[8]  J. Kruskal Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .

[9]  Hamid K. Aghajan,et al.  Sensor array processing techniques for super resolution multi-line-fitting and straight edge detection , 1993, IEEE Trans. Image Process..

[10]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[11]  Nikos D. Sidiropoulos,et al.  Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..

[12]  Salah Bourennane,et al.  Nonorthogonal Tensor Matricization for Hyperspectral Image Filtering , 2008, IEEE Geoscience and Remote Sensing Letters.

[13]  Salah Bourennane,et al.  Multiway Filtering Based on Fourth-Order Cumulants , 2005, EURASIP J. Adv. Signal Process..

[14]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[15]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[16]  VandewalleJoos,et al.  On the Best Rank-1 and Rank-(R1,R2,. . .,RN) Approximation of Higher-Order Tensors , 2000 .

[17]  Benjamin Friedlander,et al.  Performance analysis of blind signal copy using fourth order cumulants , 1996 .

[18]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[19]  S. Bourennane,et al.  Multidimensional estimation based on a tensor decomposition , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[20]  Salah Bourennane,et al.  Multidimensional filtering based on a tensor approach , 2005, Signal Process..

[21]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[22]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[23]  Tamara G. Kolda,et al.  Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .

[24]  Narendra Ahuja,et al.  Facial expression decomposition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[25]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[26]  Rasmus Bro,et al.  Multi-way Analysis with Applications in the Chemical Sciences , 2004 .

[27]  Max Welling,et al.  Positive tensor factorization , 2001, Pattern Recognit. Lett..

[28]  Nahum Kiryati,et al.  On the magic of SLIDE , 1997, Machine Vision and Applications.

[29]  Demetri Terzopoulos,et al.  Multilinear image analysis for facial recognition , 2002, Object recognition supported by user interaction for service robots.

[30]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[31]  Salah Bourennane,et al.  SVD-based image filtering improvement by means of image rotation , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[32]  H. Andrews,et al.  Singular value decompositions and digital image processing , 1976 .

[33]  Damien Muti,et al.  Multidimensional signal processing using lower-rank tensor approximation , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[34]  H. Andrews,et al.  Singular Value Decomposition (SVD) Image Coding , 1976, IEEE Trans. Commun..

[35]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[36]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[37]  Salah Bourennane,et al.  Multiway Filtering Applied on Hyperspectral Images , 2006, ACIVS.

[38]  Methodi Kovatchev,et al.  Singular Value Decomposition And Digital Image Processing , 1990, Other Conferences.

[39]  Benjamin Friedlander,et al.  DOA estimation in multipath: an approach using fourth-order cumulants , 1997, IEEE Trans. Signal Process..

[40]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[41]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[42]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[43]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..