A Stable and Accurate Butterfly Sparse Fourier Transform

Recently, the butterfly approximation scheme was proposed for computing Fourier transforms with sparse and smooth sampling in the frequency and spatial domains. We present a rigorous error analysis which shows how the local expansion degree depends on the target accuracy and the nonharmonic bandwidth. Moreover, we show that the original scheme becomes numerically unstable if a large local expansion degree is used. This problem is removed by representing all approximations in a Lagrange-type basis instead of the previously used monomial basis. All theoretical results are illustrated by numerical experiments.

[1]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[2]  Laurent Demanet,et al.  A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators , 2008, Multiscale Model. Simul..

[3]  Laurent Demanet,et al.  A Butterfly Algorithm for Synthetic Aperture Radar Imaging , 2012, SIAM J. Imaging Sci..

[4]  Stefan Kunis,et al.  Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms , 2009, TOMS.

[5]  E. Michielssen,et al.  A multilevel matrix decomposition algorithm for analyzing scattering from large structures , 1996 .

[6]  Leslie Greengard,et al.  Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..

[7]  Georg Heinig,et al.  An inversion formula and fast algorithms for Cauchy-Vandermonde matrices , 1993 .

[8]  Lexing Ying,et al.  Sparse Fourier Transform via Butterfly Algorithm , 2008, SIAM J. Sci. Comput..

[9]  Mark Tygert,et al.  Fast algorithms for spherical harmonic expansions, II , 2008, J. Comput. Phys..

[10]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[11]  Vladimir Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..

[12]  Weng Cho Chew,et al.  A sparse data fast Fourier transform (SDFFT) , 2003 .

[13]  L. Trefethen,et al.  Two results on polynomial interpolation in equally spaced points , 1991 .

[14]  T. J. Rivlin Chebyshev polynomials : from approximation theory to algebra and number theory , 1990 .

[15]  Martin Vetterli,et al.  Fast Fourier transforms: a tutorial review and a state of the art , 1990 .

[16]  Michael O'Neil,et al.  An algorithm for the rapid evaluation of special function transforms , 2010 .

[17]  Sivan Toledo,et al.  The Future Fast Fourier Transform? , 1997, PPSC.

[18]  Lexing Ying,et al.  Fast Computation of Partial Fourier Transforms , 2009, Multiscale Model. Simul..

[19]  Mark Tygert,et al.  Fast algorithms for spherical harmonic expansions, III , 2009, J. Comput. Phys..

[20]  Mark Tygert,et al.  Fast Algorithms for Spherical Harmonic Expansions , 2006, SIAM J. Sci. Comput..