AN A POSTERIORI ERROR ESTIMATE OF THE OUTER NORMAL DERIVATIVE USING DUAL WEIGHTS ̊

We derive a residual based a-posteriori error estimate for the outer normal derivative of approximations to Poisson's problem. By analyzing the solution of the adjoint problem, we show that error indicators in the bulk may be defined to be of higher order than those close to the boundary, which lead to more economic meshes. The theory is illustrated with some numerical examples.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  A mixed finite element method for boundary flux computation , 1986 .

[3]  Robert L. Lee,et al.  THE CONSISTENT GALERKIN FEM FOR COMPUTING DERIVED BOUNDARY QUANTITIES IN THERMAL AND/OR FLUIDS PROBLEMS , 1987 .

[4]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[5]  Helio J. C. Barbosa,et al.  The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .

[6]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[7]  M. Winkler,et al.  Finite Element Error Estimates for Normal Derivatives on Boundary Concentrated Meshes , 2018, SIAM J. Numer. Anal..

[8]  Endre Süli,et al.  Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow , 1997 .

[9]  R. Franke A Critical Comparison of Some Methods for Interpolation of Scattered Data , 1979 .

[10]  Jarmo Partanen,et al.  A Simplified FEM Based Calculation Model for 3-D Induction Heating Problems Using Surface , 2001 .

[11]  Silvia Bertoluzza Local boundary estimates for the Lagrange multiplier discretization of a Dirichlet boundary value problem with application to domain decomposition , 2006 .

[12]  B. Dennis,et al.  Simultaneous Determination of Steady Temperatures and Heat Fluxes on Surfaces of Three Dimensional Objects Using FEM , 2001, Heat Transfer: Volume 5 — Computational, Aerospace and Environmental Heat Transfer.

[13]  Mats G. Larson,et al.  $L^2$-error estimates for finite element approximations of boundary fluxes , 2014 .

[14]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[15]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[16]  R. RannacherInstitut,et al.  Weighted a Posteriori Error Control in Fe Methods , 1995 .

[17]  Franco Brezzi,et al.  Stabilization Techniques for Domain Decomposition Methods with Non-Matching Grids , 1997 .

[18]  Thomas Richter,et al.  Variational localizations of the dual weighted residual estimator , 2015, J. Comput. Appl. Math..

[19]  B Faermann Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods. Part I. The two-dimensional case , 2000 .

[20]  Thomas Apel,et al.  Local mesh refinement for the discretization of Neumann boundary control problems on polyhedra , 2016 .

[21]  Barbara I. Wohlmuth,et al.  On optimal $$L^2$$L2- and surface flux convergence in FEM , 2013, Comput. Vis. Sci..

[22]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[23]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[24]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[25]  Silvia Bertoluzza Analysis of a mesh-dependent stabilization for the three fields domain decomposition method , 2016, Numerische Mathematik.

[26]  Arnd Rösch,et al.  Finite element error estimates on the boundary with application to optimal control , 2014, Math. Comput..

[27]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .