Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations

We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation.

[1]  C. Lubich,et al.  Fractional linear multistep methods for Abel-Volterra integral equations of the second kind , 1985 .

[2]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[3]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[4]  I. Podlubny Fractional differential equations , 1998 .

[5]  N. Ford,et al.  Numerical Solution of the Bagley-Torvik Equation , 2002, BIT Numerical Mathematics.

[6]  Kai Diethelm,et al.  Numerical analysis for distributed-order differential equations , 2009 .

[7]  Alain Roger Nkamnang Diskretisierung von mehrgliedrigen Abelschen Integralgleichungen und gewöhnlichen Differentialgleichungen gebrochener Ordnung , 1999 .

[8]  K. Diethelm AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 1997 .

[9]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[10]  C. Lubich Convolution quadrature and discretized operational calculus. II , 1988 .

[11]  Neville J. Ford,et al.  Comparison of numerical methods for fractional differential equations , 2006 .

[12]  N. Ford,et al.  Pitfalls in fast numerical solvers for fractional differential equations , 2006 .

[13]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[14]  Kai Diethelm,et al.  Numerical solution methods for distributed order differential equations , 2001 .

[15]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[16]  C. Lubich Convolution Quadrature Revisited , 2004 .

[17]  N. Ford,et al.  The numerical solution of linear multi-term fractional differential equations: systems of equations , 2002 .

[18]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[19]  R. Gorenflo,et al.  AN OPERATIONAL METHOD FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS WITH THE CAPUTO DERIVATIVES , 1999 .

[20]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[21]  C. Lubich,et al.  A Stability Analysis of Convolution Quadraturea for Abel-Volterra Integral Equations , 1986 .

[22]  Kai Diethelm,et al.  Efficient Solution of Multi-Term Fractional Differential Equations Using P(EC)mE Methods , 2003, Computing.

[23]  Kai Diethelm,et al.  Multi-order fractional differential equations and their numerical solution , 2004, Appl. Math. Comput..