ExoMol: molecular line lists for exoplanet and other atmospheres

The discovery of extrasolar planets is one of the major scientific advances of the last two decades. Hundreds of planets have now been detected and astronomers are beginning to characterize their composition and physical characteristics. To do this requires a huge quantity of spectroscopic data most of which are not available from laboratory studies. The ExoMol project will offer a comprehensive solution to this problem by providing spectroscopic data on all the molecular transitions of importance in the atmospheres of exoplanets. These data will be widely applicable to other problems and will be used for studies on cool stars, brown dwarfs and circumstellar environments. This paper lays out the scientific foundations of this project and reviews previous work in this area. A mixture of first principles and empirically tuned quantum mechanical methods will be used to compute comprehensive and very large rotation–vibration and rotation–vibration– electronic line lists. Methodologies will be developed for treating larger molecules such as methane and nitric acid. ExoMol will rely on these developments and the use of state-of-the-art

[1]  T. Johnson,et al.  Gas-Phase Databases for Quantitative Infrared Spectroscopy , 2004, Applied spectroscopy.

[2]  V. Tyuterev,et al.  Ab initio dipole moment functions of H232S and intensity anomalies in rovibrational spectra , 2002 .

[3]  J. Tennyson,et al.  High-Accuracy ab Initio Rotation-Vibration Transitions for Water , 2003, Science.

[4]  R. S. Ram,et al.  New CrH Opacities for the Study of L and Brown Dwarf Atmospheres , 2002, astro-ph/0206159.

[5]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[6]  H. Quiney,et al.  Higher-order relativistic corrections to the vibration–rotation levels of H2S , 2002 .

[7]  J. Tennyson,et al.  The influence of H2O line blanketing on the spectra of cool dwarf stars , 1994 .

[8]  D. Mondelain,et al.  The absorption spectrum of methane at 80 and 294 K in the icosad (6717–7589 cm−1): Improved empirical line lists, isotopologue identification and temperature dependence , 2012 .

[9]  T. Schmidt,et al.  Observation of the dΠg3←cΣu+3 band system of C2 , 2006 .

[10]  Joel M Bowman,et al.  Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface. , 2008, The Journal of chemical physics.

[11]  G. Brandes,et al.  Rotational and vibrational analysis of bands of the f1Δ-a1Δ system of titanium oxide , 1985 .

[12]  P. Hauschildt,et al.  The Molecular Continuum Opacity of 24MgH in Cool Stellar Atmospheres , 2002, astro-ph/0207042.

[13]  J. Tennyson,et al.  Vibrational and rotational cooling of H3 , 2002 .

[14]  A. Sauval,et al.  A set of partition functions and equilibrium constants for 300 diatomic molecules of astrophysical interest , 1984 .

[15]  Thomas Müller,et al.  High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin–orbit CI and parallel CI density , 2001 .

[16]  S. Glover,et al.  Is H+3 cooling ever important in primordial gas? , 2008, 0809.0780.

[17]  Peter H. Hauschildt,et al.  TiO and H2O Absorption Lines in Cool Stellar Atmospheres , 2000, astro-ph/0008465.

[18]  Maria Teresa Ruiz,et al.  The Chemical Evolution of Cool White Dwarfs and the Age of the Local Galactic Disk , 1997 .

[19]  J. Tennyson,et al.  Water production and release in Comet 153P/Ikeya-Zhang (C/2002 C1): accurate rotational temperature retrievals from hot-band lines near 2.9-μm , 2004 .

[20]  I. Yamamura,et al.  Three-micron spectra of AGB stars and supergiants in nearby galaxies , 2005, astro-ph/0501247.

[21]  P. Bernath,et al.  CRIRES spectroscopy and empirical line-by-line identification of FeH molecular absorption in an M dwarf , , 2010, 1007.4116.

[22]  R. S. Ram,et al.  Spectroscopic constants, abundances, and opacities of the TiH molecule , 2004, astro-ph/0411680.

[23]  S. Langhoff,et al.  A theoretical study of the electric dipole moment function of SiO , 1993 .

[24]  P. Jensen,et al.  A new "spectroscopic" potential energy surface for formaldehyde in its ground electronic state. , 2011, The Journal of chemical physics.

[25]  Lin Ma,et al.  Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy. , 2009, Optics express.

[26]  T. Schmidt,et al.  The dΠg3-cΣu+3 band system of C2 , 2007 .

[27]  J. Watson Simplification of the molecular vibration-rotation hamiltonian , 2002 .

[28]  C. Bauschlicher,et al.  LINE INTENSITIES AND MOLECULAR OPACITIES OF THE FeH F ^4Delta~i-X ^4Delta~i TRANSITION , 2003 .

[29]  P. Jensen,et al.  PH₃ revisited: Theoretical transition moments for the vibrational transitions below 7000 cm⁻¹ , 2008 .

[30]  T. Gerber,et al.  Deperturbation study of the d3Πg,v′=4 state of C2 by applying degenerate and two-color resonant four-wave mixing , 2010 .

[31]  J. Tennyson,et al.  Water in the near-infrared spectrum of comet 8P/Tuttle , 2008, 0809.3687.

[32]  P. Hauschildt,et al.  The Molecular Line Opacity of MgH in Cool Stellar Atmospheres , 2002, astro-ph/0206219.

[33]  J Grant Hill,et al.  Correlation consistent basis sets for molecular core-valence effects with explicitly correlated wave functions: the atoms B-Ne and Al-Ar. , 2010, The Journal of chemical physics.

[34]  J. Tennyson,et al.  On the use of variational wavefunctions in calculating vibrational band intensities , 1992 .

[35]  R. Tolchenov,et al.  A high accuracy computed line list for the HDO molecule , 2010 .

[36]  J. Goldsmith,et al.  Stimulated emission pumping spectroscopy of jet‐cooled C3 , 1989 .

[37]  U. Jørgensen,et al.  Complete active space self-consistent field calculations of the vibrational band strengths for C3 , 1989 .

[38]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[39]  P. Jensen,et al.  Calculation of Rotation–Vibration Energy Levels in Ground State C3by a Born–Oppenheimer-Type Separation of the Vibrational Motions , 1997 .

[40]  Richard J. Mathar,et al.  Refractive index of humid air in the infrared: model fits , 2007 .

[41]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[42]  J. Tennyson,et al.  A spectroscopic linelist for hot water , 1997 .

[43]  T. Schmidt,et al.  Oscillator strengths of the Mulliken, Swan, Ballik-Ramsay, Phillips, and d3Pi g<--c 3Sigma u+ systems of C2 calculated by MRCI methods utilizing a biorthogonal transformation of CASSCF orbitals. , 2007, The Journal of chemical physics.

[44]  A Search for Very Low Mass Stars and Brown Dwarfs in the Young σ Orionis Cluster , 1999, astro-ph/9903217.

[45]  Ralf Schneider,et al.  Ab initio modeling of molecular IR spectra of astrophysical interest: Application to CH4 , 2009 .

[46]  FRANCESCO AQUILANTE,et al.  MOLCAS 7: The Next Generation , 2010, J. Comput. Chem..

[47]  M. Seaton The Opacity Project , 1995 .

[48]  J. Tennyson,et al.  The role of H3+in planetary atmospheres , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[49]  P. Jensen,et al.  Theoretical ROVibrational Energies (TROVE) : A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules , 2007 .

[50]  J. Tennyson,et al.  Molecular line lists for modelling the opacity of cool stars , 2007 .

[51]  Jonathan Tennyson,et al.  H3+ cooling in planetary atmospheres. , 2010, Faraday discussions.

[52]  G. G. Balint-Kurti,et al.  Ab initio calculations and vibrational energy level fits for the lower singlet potential-energy surfaces of C3. , 2004, The Journal of chemical physics.

[53]  D. Schwenke Towards accurate ab initio predictions of the vibrational spectrum of methane. , 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[54]  T. Schmidt,et al.  Quantum chemical study and experimental observation of a new band system of C(2), e 3Pi(g)-c 3Sigma(u)+. , 2009, The Journal of chemical physics.

[55]  J. Tennyson,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[56]  J. Tennyson,et al.  Calculated spectra for HeH+ and its effect on the opacity of cool metal‐poor stars , 2004, astro-ph/0411267.

[57]  T. Gerber,et al.  Shedding light on a dark state: the energetically lowest quintet state of C2. , 2011, The Journal of chemical physics.

[58]  A comparison of water vapor line parameters for modeling the Venus deep atmosphere , 2009, 0901.3869.

[59]  E. Rohlfing Laser‐induced‐fluorescence spectroscopy of jet‐cooled C3 , 1989 .

[60]  Tommi T. Koskinen,et al.  A stability limit for the atmospheres of giant extrasolar planets , 2007, Nature.

[61]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[62]  P. Jensen,et al.  H2O in stellar atmospheres , 2001 .

[63]  M. Seaton,et al.  Atomic data for opacity calculations. I. General description , 1987 .

[64]  D. Schwenke Opacity of TiO from a coupled electronic state calculation parametrized by abinitio and experimental data , 1998 .

[65]  J. E. McCord,et al.  Laser Spectroscopy of TiO: Accurate Term Energies for the Singlet States and Ligand Field Assignment of States in the Range 0 to 4 eV , 1995 .

[66]  Harry Partridge,et al.  Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities , 2000 .

[67]  T. Y. Chesnokova,et al.  Calculation of solar radiation atmospheric absorption with different H2O spectral line data banks , 2009 .

[68]  C. Richard,et al.  LABORATORY MEASUREMENTS OF NiH BY FOURIER TRANSFORM DISPERSED FLUORESCENCE , 2009 .

[69]  T. Schmidt,et al.  Oscillator strengths and radiative lifetimes for C2: Swan, Ballik-Ramsay, Phillips, and dΠg3←cΣu+3 systems , 2007 .

[70]  N. Ashok,et al.  Near-Infrared Water Lines in V838 Monocerotis , 2005, astro-ph/0506403.

[71]  Harry Partridge,et al.  The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data , 1997 .

[72]  T. Oka,et al.  The Nonthermal Rotational Distribution of H3+ , 2004 .

[73]  J. Tennyson,et al.  Towards efficient refinement of molecular potential energy surfaces: Ammonia as a case study , 2011 .

[74]  L. Berg,et al.  Spectroscopy of AlO: Combined analysis of the A2Πi → X2Σ+ and B2Σ+ → X2Σ+ transitions , 2011 .

[75]  R. Siebenmorgen,et al.  The Fluorine Abundance in a Galactic Bulge AGB Star Measured from CRIRES Spectra , 2008, 0804.4057.

[76]  J. Tennyson,et al.  Improved HCN/HNC linelist, model atmospheres and synthetic spectra for WZ Cas , 2005, astro-ph/0512363.

[77]  J. Tennyson,et al.  Line lists for H218O and H217O based on empirical line positions and ab initio intensities , 2012 .

[78]  B. Simard,et al.  Spectroscopy and photophysics of refractory molecules at low temperature: Rotational analysis of the E3Π-X3Δ (0,0) band of titanium monoxide , 1991 .

[79]  R. Klessen,et al.  Effects of primordial chemistry on the cosmic microwave background , 2008, 0803.3987.

[80]  J. Tennyson,et al.  The identification of HCN and HNC in carbon stars: model atmospheres, synthetic spectra and fits to observations in the 2.7–4.0 μm region , 2003, astro-ph/0306141.

[81]  J. Tennyson,et al.  Spectral analysis of high resolution near-infrared spectra of ultra cool dwarfs , 2007, 0708.2676.

[82]  K. Jucks,et al.  Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. , 2002, Astrobiology.

[83]  G. Mellau Complete experimental rovibrational eigenenergies of HCN up to 6880 cm(-1) above the ground state. , 2010, The Journal of chemical physics.

[84]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[85]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[86]  J. Tennyson,et al.  Overtone spectroscopy of H2D+ and D2H+ using laser induced reactions. , 2007, The Journal of chemical physics.

[87]  T. Sochi,et al.  A computed line list for the H2D+ molecular ion , 2010, 1002.2073.

[88]  P G Burke,et al.  Atomic data for opacity calculations. II. Computational methods , 1987 .

[89]  The Near-Infrared Spectrum of the Brown Dwarf Gliese 229B , 1996, astro-ph/9606056.

[90]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[91]  J. Tennyson,et al.  The electronic bands of CrD, CrH, MgD and MgH: application to the ‘deuterium test’ , 2007, 0710.0368.

[92]  J. Tennyson,et al.  Spectroscopic properties of the H{sup +}{sub 3} molecule: A new calculated line list , 1996 .

[93]  A. Fayt,et al.  Radiative model for emission spectroscopy from optically thick laboratory acetylene samples at high temperature , 2011 .

[94]  Gábor Czakó,et al.  Vibrational energy levels with arbitrary potentials using the Eckart-Watson Hamiltonians and the discrete variable representation. , 2007, The Journal of chemical physics.

[95]  A. J. Merer,et al.  Rotational analysis of four bands of the γ′(B3Π–X3Δ) system of TiO , 1979 .

[96]  J. Tennyson,et al.  A High-Temperature Partition Function for H3+ , 1995 .

[97]  Joel M. Bowman,et al.  The adiabatic rotation approximation for rovibrational energies of many-mode systems: Description and tests of the method , 1998 .

[98]  V. M. Devi,et al.  The 2009 edition of the GEISA spectroscopic database , 2011 .

[99]  L. Esposito,et al.  International ultraviolet explorer observation of Venus SO2 and SO , 1990 .

[100]  J. Tennyson,et al.  Radiative cooling functions for primordial molecules , 2011, 1103.2957.

[101]  T. M. Petrova,et al.  High-Resolution Spectroscopy and Preliminary Global Analysis of C-H Stretching Vibrations of C2H4 in the 3000 and 6000 cm-1 Regions , 2010 .

[102]  S. Bramble,et al.  A hot band LIF study of the A 1Πu-X1Σ+g transition in C3 , 1993 .

[103]  P. Bernath,et al.  Revised molecular constants and term values for the X3Σ− and A3Π states of NH , 2009 .

[104]  B. Braams,et al.  Ro-vibrational spectra of C2H2 based on variational nuclear motion calculations , 2010 .

[105]  Jonathan Tennyson,et al.  New vibration-rotation code for tetraatomic molecules exhibiting wide-amplitude motion: WAVR4 , 2004, Comput. Phys. Commun..

[106]  P. Stancil,et al.  Theoretical study of the rovibrationally resolved transitions of CaH , 2003 .

[107]  R. Vetter,et al.  High resolution rotational analysis of the B 3Π–X 3Δ (1,0) band of titanium monoxide , 1995 .

[108]  P. A. R. Ade,et al.  EChO - Exoplanet Characterisation Observatory , 2010, 1112.2728.

[109]  R. Ferber,et al.  Solution of the fully-mixed-state problem: Direct deperturbation analysis of the A Σ + 1 – b Π 3 complex in a NaCs dimer , 2009 .

[110]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[111]  L. Rothman,et al.  Direct numerical diagonalization: Wave of the future , 1992 .

[112]  P. Bernath,et al.  The Swan System of C2: A Global Analysis of Fourier Transform Emission Spectra , 2007 .

[113]  J. Tennyson,et al.  Water in exoplanets , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[114]  P. Bernath,et al.  IUPAC critical evaluation of the rotational–vibrational spectra of water vapor. Part I—Energy levels and transition wavenumbers for H217O and H218O , 2009 .

[115]  J. Tennyson,et al.  Opacity Data for HCN and HNC from a New Ab Initio Line List , 2002 .

[116]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[117]  J. Tennyson,et al.  A variationally computed line list for hot NH3 , 2010, 1011.1569.

[118]  R. S. Ram,et al.  FOURIER TRANSFORM EMISSION SPECTROSCOPY OF THE B2Σ+–X2Σ+ (VIOLET) SYSTEM OF 13C14N , 2011 .

[119]  P. Jensen,et al.  Ab initio dipole moment and theoretical rovibrational intensities in the electronic ground state of PH3 , 2006 .

[120]  J. Goldsmith,et al.  Stimulated-emission pumping spectroscopy of jet-cooled C 3 : antisymmetric stretch–bend levels , 1990 .

[121]  V. Boudon,et al.  Global analysis of the high resolution infrared spectrum of methane 12CH4 in the region from 0 to 4800 cm−1 , 2009 .

[122]  R. Tolchenov,et al.  Water vapor line width and shift calculations with accurate vibration–rotation wave functions , 2008 .

[123]  J. Tennyson,et al.  Calculating energy levels of isomerizing tetra-atomic molecules. II. The vibrational states of acetylene and vinylidene. , 2005, The Journal of chemical physics.

[124]  V. Tyuterev,et al.  An accurate isotopically invariant potential function of the hydrogen sulphide molecule , 2001 .

[125]  J. Tennyson,et al.  A H13CN/HN13C linelist, model atmospheres and synthetic spectra for carbon stars , 2008, 0807.0717.

[126]  J. Tennyson,et al.  Temperature dependent partition functions and equilibrium constant for HCN and HNC , 2002 .

[127]  C. Marian An approach to the calculation of Ω-splittings in diatomic molecules with strongly coupled electronic states and its application to NiH and NiD , 1995 .

[128]  G. Mellau Highly excited rovibrational states of HNC , 2011 .

[129]  R. Tolchenov,et al.  Potential energy surface of HDO up to 25,000 cm-1. , 2008, The Journal of chemical physics.

[130]  Jonathan Tennyson,et al.  UKIRT Observations of the Impact and Consequences of Comet Shoemaker-Levy 9 on Jupiter , 1997 .

[131]  C. Geroux,et al.  RADIAL STELLAR PULSATION AND THREE-DIMENSIONAL CONVECTION. I. NUMERICAL METHODS AND ADIABATIC TEST CASES , 2011, 1102.1923.

[132]  J. Tennyson,et al.  Rovibrational relaxation model for H3+ , 2004 .

[133]  P. Bernath,et al.  K-Band Spectrum of Water in Sunspots , 1997 .

[134]  D. Goorvitch Infrared CO line for the X 1 Sigma(+) state , 1994 .

[135]  Laurence S. Rothman,et al.  Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database , 2006 .

[136]  S. Saha,et al.  Experimental and ab initio study of a new D̃Δg1 state of the C3 radical , 2006 .

[137]  S. Skory,et al.  New Theoretical Line List for the B′ 2Σ+←X 2Σ+ System of 24MgH , 2003 .

[138]  J. Tennyson,et al.  A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule. , 2011, The Journal of chemical physics.

[139]  J. Tennyson,et al.  Infrared Transition Intensities for Water: A Comparison of ab-Initio and Fitted Dipole Moment Surfaces , 1995 .

[140]  C. Linton Analysis of the ?v = 0 sequence of the (c1F - a1?) system of the TiO molecule , 1974 .

[141]  S. Tashkun,et al.  CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank , 2011 .

[142]  Jonathan Tennyson,et al.  Water Production Rates, Rotational Temperatures, and Spin Temperatures in Comets C/1999 H1 (Lee), C/1999 S4, and C/2001 A2 , 2005 .

[143]  Jonathan Tennyson,et al.  DVR3D: a program suite for the calculation of rotation-vibration spectra of triatomic molecules , 2004, Comput. Phys. Commun..

[144]  C. Marian Spin‐Orbit Coupling in Molecules , 2001 .

[145]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[146]  J. Almlöf,et al.  CASSCF and CCI calculations of the vibrational band strengths of HCN , 1985 .

[147]  Tom Herbst,et al.  Deciphering spectral fingerprints of habitable exoplanets. , 2009, Astrobiology.

[148]  P. Stancil CONTINUOUS ABSORPTION BY HE2+ AND H2+ IN COOL WHITE DWARFS , 1994 .

[149]  P. Hauschildt,et al.  MODEL ATMOSPHERES OF VERY LOW MASS STARS AND BROWN DWARFS , 1997 .

[150]  Laurence S. Rothman,et al.  HITRAN HAWKS and HITEMP: high-temperature molecular database , 1995, Defense, Security, and Sensing.

[151]  Jenning Y. Seto,et al.  A Computer Program for Fitting Diatomic Molecule Spectral Data to Potential Energy Functions , 2006 .

[152]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[153]  J. Beaulieu,et al.  METHANE IN THE ATMOSPHERE OF THE TRANSITING HOT NEPTUNE GJ436B? , 2010, 1007.0324.

[154]  A. Irwin Polynomial partition function approximations of 344 atomic and molecular species. , 1981 .

[155]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[156]  Jonathan Tennyson,et al.  MARVEL: measured active rotational-vibrational energy levels , 2007 .

[157]  Jonathan Tennyson,et al.  Virtual Atomic and Molecular Data Centre , 2010 .

[158]  E. Lindermeir,et al.  HITEMP derived spectral database for the prediction of jet engine exhaust infrared emission using a statistical band model , 2012 .

[159]  F. J. Northrup,et al.  Stimulated-emission pumping spectroscopy study of jet-cooled C 3 : pure bending levels and bend–symmetric-stretch combination levels of X˜ 1 Σg+ , 1990 .

[160]  A. Fayt,et al.  Accurate partition function for acetylene, 12C2H2, and related thermodynamical quantities. , 2011, The Journal of chemical physics.

[161]  J. T. Hougen,et al.  The vibration-rotation problem in triatomic molecules allowing for a large-amplitude bending vibration , 1970 .

[162]  P. Jensen,et al.  Potential parameters of PH3 obtained by simultaneous fitting of ab initio data and experimental vibrational band origins , 2003 .

[163]  Jonathan Tennyson,et al.  Molecular effects in investigations of tritium molecule beta decay endpoint experiments , 2006 .

[164]  R. S. Ram,et al.  Near-Infrared Spectroscopy of TiO: Laboratory Measurements and Identification in Sunspots , 1996 .

[165]  L. KuruczRobert Including all the lines11This article is part of a Special Issue on the 10th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas. , 2011 .

[166]  J. Tennyson,et al.  The ab initio calculation of the vibrational‐rotational spectrum of triatomic systems in the close‐coupling approach, with KCN and H2Ne as examples , 1982 .

[167]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[168]  J. Brault,et al.  The titanium oxide phi system , 1980 .

[169]  J. Fujimoto,et al.  High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy. , 2007, Optics express.

[170]  P. Bernath,et al.  IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part II. Energy Levels and Transition Wavenumbers for HD16O, HD17O, and HD18O , 2010 .

[171]  J. Tennyson,et al.  A variationally computed T = 300 K line list for NH3. , 2009, The journal of physical chemistry. A.

[172]  R. Tolchenov,et al.  A new ab initio ground-state dipole moment surface for the water molecule. , 2008, The Journal of chemical physics.

[173]  T. Schmidt,et al.  The 1(5)Π(g) state of C2. , 2011, The Journal of chemical physics.

[174]  The Role of HeH + in Cool Helium-rich White Dwarfs , 2004, astro-ph/0411331.

[175]  J. Tennyson,et al.  Accurate partition function and thermodynamic data for water , 2000 .

[176]  J. Tennyson Accurate variational calculations for line lists to model the vibration–rotation spectra of hot astrophysical atmospheres , 2012 .

[177]  Philippe Rivière,et al.  Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases , 2012 .

[178]  S. Tashkun,et al.  An isotopic-independent highly accurate potential energy surface for CO2 isotopologues and an initial (12)C(16)O2 infrared line list. , 2012, The Journal of chemical physics.

[179]  J. Tennyson,et al.  Spectral analysis of water vapour in cool stars , 2001, astro-ph/0110649.