Estimation of rice leaf nitrogen contents based on hyperspectral LIDAR

[1]  Teemu Hakala,et al.  Fast and nondestructive method for leaf level chlorophyll estimation using hyperspectral LiDAR , 2014 .

[2]  Z. Niu,et al.  Estimation of leaf biochemical content using a novel hyperspectral full-waveform LiDAR system , 2014 .

[3]  Anatoly A. Gitelson,et al.  Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[4]  Teemu Hakala,et al.  Nitrogen concentration estimation with hyperspectral LiDAR , 2013 .

[5]  Michele Dalponte,et al.  Tree Species Classification in Boreal Forests With Hyperspectral Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Jon Atli Benediktsson,et al.  Spectral Derivative Features for Classification of Hyperspectral Remote Sensing Images: Experimental Evaluation , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  Gong Wei,et al.  Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance , 2012 .

[8]  J. Suomalainen,et al.  Full waveform hyperspectral LiDAR for terrestrial laser scanning. , 2012, Optics express.

[9]  Xin Huang,et al.  Wavelength selection and spectral discrimination for paddy rice, with laboratory measurements of hyperspectral leaf reflectance , 2011 .

[10]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[11]  Pablo J. Zarco-Tejada,et al.  Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data , 2011 .

[12]  V. Alchanatis,et al.  Review: Sensing technologies for precision specialty crop production , 2010 .

[13]  Yuwei Chen,et al.  Two-channel Hyperspectral LiDAR with a Supercontinuum Laser Source , 2010, Sensors.

[14]  Jon Atli Benediktsson,et al.  SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images , 2010, IEEE Geoscience and Remote Sensing Letters.

[15]  A. Brenning Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection , 2009 .

[16]  K. H. Ryu,et al.  Fertiliser application performance of a variable-rate pneumatic granular applicator for rice production , 2008 .

[17]  Benyang Tang,et al.  Spacebased Estimation of Moisture Transport in Marine Atmosphere Using Support Vector Regression , 2008 .

[18]  P. Varshney,et al.  Multisource Classification Using Support Vector Machines: An Empirical Comparison with Decision Tree and Neural Network Classifiers , 2008 .

[19]  Weixing Cao,et al.  Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice , 2008, Int. J. Appl. Earth Obs. Geoinformation.

[20]  M. Borengasser,et al.  Hyperspectral Remote Sensing: Principles and Applications , 2007 .

[21]  Juha Hyyppä,et al.  Toward Hyperspectral Lidar: Measurement of Spectral Backscatter Intensity With a Supercontinuum Laser Source , 2007, IEEE Geoscience and Remote Sensing Letters.

[22]  S. Durbha,et al.  Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer , 2007 .

[23]  K. Itten,et al.  Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization , 2007 .

[24]  Gustavo Camps-Valls,et al.  Retrieval of oceanic chlorophyll concentration with relevance vector machines , 2006 .

[25]  K. Itten,et al.  Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction , 2006 .

[26]  José Luis Rojo-Álvarez,et al.  Robust support vector regression for biophysical variable estimation from remotely sensed images , 2006, IEEE Geoscience and Remote Sensing Letters.

[27]  Y. Ito,et al.  High contrast and efficient blazed grating light valve for full-HD 5,000 lumen laser projectors , 2006, 2006 Digest of Technical Papers International Conference on Consumer Electronics.

[28]  H. Cai,et al.  MEMS Littman tunable laser using curve-shaped blazed grating , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[29]  Mingyi He,et al.  Band selection based on feature weighting for classification of hyperspectral data , 2005, IEEE Geoscience and Remote Sensing Letters.

[30]  Gabriele Moser,et al.  Partially Supervised classification of remote sensing images through SVM-based probability density estimation , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Lorenzo Bruzzone,et al.  Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[32]  D. Civco,et al.  Road Extraction Using SVM and Image Segmentation , 2004 .

[33]  Giles M. Foody,et al.  Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification , 2004 .

[34]  Ranga B. Myneni,et al.  Lidar remote sensing for modeling gross primary production of deciduous forests , 2004 .

[35]  Songxin Tan,et al.  Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing. , 2004, Applied optics.

[36]  Paul M. Mather,et al.  An assessment of the effectiveness of decision tree methods for land cover classification , 2003 .

[37]  J. Schjoerring,et al.  Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .

[38]  N. Zhang,et al.  Precision agriculture—a worldwide overview , 2002 .

[39]  J. Peñuelas,et al.  Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals , 2002 .

[40]  Eleazar Eskin,et al.  The Spectrum Kernel: A String Kernel for SVM Protein Classification , 2001, Pacific Symposium on Biocomputing.

[41]  M. Lefsky,et al.  Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests , 2001 .

[42]  N. Broge,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2001 .

[43]  Jean-Philippe Gastellu-Etchegorry,et al.  A modeling approach to assess the robustness of spectrometric predictive equations for canopy chemistry , 2001 .

[44]  Aloysius Wehr,et al.  Airborne laser scanning—an introduction and overview , 1999 .

[45]  C. Brodley,et al.  Decision tree classification of land cover from remotely sensed data , 1997 .

[46]  Fuan Tsai,et al.  Derivative analysis of hyperspectral data for detecting spectral features , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[47]  L. Johnson,et al.  Spectrometric Estimation of Total Nitrogen Concentration in Douglas-Fir Foliage , 1996 .

[48]  S. Ustin,et al.  Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data , 1996 .

[49]  B. Yoder,et al.  Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales , 1995 .

[50]  Michael D. Steven,et al.  High resolution derivative spectra in remote sensing , 1990 .

[51]  Piech Ma,et al.  Symbolic representation of hyperspectral data , 1987 .

[52]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[53]  Armand Wirgin,et al.  Theoretical and Experimental Investigation of a New Type of Blazed Grating , 1969 .

[54]  F. Kneubühl,et al.  Diffraction grating spectroscopy. , 1969, Applied optics.

[55]  Teemu Hakala,et al.  Artificial target detection with a hyperspectral LiDAR over 26-h measurement , 2015 .

[56]  龚威 Gong Wei,et al.  A Method to Select Receiving Channels for the Multi-Spectral Earth Observation LiDAR , 2014 .

[57]  L. Plümer,et al.  Sequential support vector machine classification for small-grain weed species discrimination with special regard to Cirsium arvense and Galium aparine , 2012 .

[58]  Zhang Qiheng Artificial target detection based on enhanced fractal feature , 2006 .

[59]  Jason A. Cole,et al.  Hyperspectral Remote Sensing and Its Applications , 2005 .

[60]  Douglas C. Schmidt,et al.  The Design and Performance of , 2003 .

[61]  G. A. Blackburn,et al.  Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves , 1998 .

[62]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[63]  J. Melack,et al.  Remote sensing of foliar chemistry of inundated rice with imaging spectrometry , 1996 .

[64]  A. Gitelson,et al.  Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm , 1996 .

[65]  J. Mavor,et al.  Digest of Technical Papers ESSCIRC'87 , 1987 .

[66]  M. Piech,et al.  Symbolic representation of hyperspectral data. , 1987, Applied optics.

[67]  W. Heine,et al.  [A century of Kjeldahl's nitrogen determination]. , 1985, Zeitschrift fur medizinische Laboratoriumsdiagnostik.

[68]  R. Engelbrecht,et al.  DIGEST of TECHNICAL PAPERS , 1959 .