Simultaneous Estimation of Material Properties and Pose for Deformable Objects from Depth and Color Images

In this paper we consider the problem of estimating 6D pose, material properties and deformation of an object grasped by a robot gripper. To estimate the parameters we minimize an error function incorporating visual and physical correctness. Through simulated and real-world experiments we demonstrate that we are able to find realistic 6D poses and elasticity parameters like Young’s modulus. This makes it possible to perform subsequent manipulation tasks, where accurate modelling of the elastic behaviour is important.

[1]  W. O’Brien,et al.  Young's modulus measurements of soft tissues with application to elasticity imaging , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[2]  A.R. Skovoroda,et al.  Measuring the Elastic Modulus of Small Tissue Samples , 1998, Ultrasonic imaging.

[3]  George A. Bekey,et al.  Intelligent Learning for Deformable Object Manipulation , 1999, Auton. Robots.

[4]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[5]  Pedro Larrañaga,et al.  Towards a New Evolutionary Computation - Advances in the Estimation of Distribution Algorithms , 2006, Towards a New Evolutionary Computation.

[6]  Wolfram Burgard,et al.  Learning the elasticity parameters of deformable objects with a manipulation robot , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Gian Luca Foresti,et al.  Automatic visual recognition of deformable objects for grasping and manipulation , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[8]  H. Benaroya,et al.  DYNAMICS OF TRANSVERSELY VIBRATING BEAMS USING FOUR ENGINEERING THEORIES , 1999 .

[9]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[10]  Henrik Gordon Petersen,et al.  Refining Visually Detected Object poses , 2010 .

[11]  Preben Hagh Strunge Holm Robust Pose Refinement , 2011 .

[12]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[13]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[14]  Sandra Parker,et al.  The relationship between Shore hardness of elastomeric dental materials and Young's modulus. , 2009, Dental Materials.

[15]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[16]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[17]  Henrik Gordon Petersen,et al.  Learning Peg-In-Hole Actions with Flexible Objects , 2012, ICAART.

[18]  R. Rivlin LARGE ELASTIC DEFORMATIONS OF ISOTROPIC MATERIALS. I. FUNDAMENTAL CONCEPTS , 1997 .

[19]  Rolf Dieter Schraft,et al.  Intelligent picking of chaotically stored objects , 2003 .

[20]  Reinhard Koch,et al.  Fast Tracking of Deformable Objects in Depth and Colour Video , 2011, BMVC.