Towards topological analysis of high-dimensional feature spaces

In this paper we present ideas from computational topology, applicable in analysis of point cloud data. In particular, the point cloud can represent a feature space of a collection of objects such as images or text documents. Computing persistent homology reveals the global structure of similarities between the data. Furthermore, we argue that it is essential to incorporate higher-degree relationships between objects. Finally, we show that new computational topology algorithms expose much better practical performance compared to standard techniques.

[1]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[2]  Steve Oudot,et al.  Persistence stability for geometric complexes , 2012, ArXiv.

[3]  G.-L. Feng,et al.  An Empirical Investigation on Important Subgraphs in Cooperation-Competition networks , 2011, ArXiv.

[4]  David Eppstein,et al.  Listing All Maximal Cliques in Large Sparse Real-World Graphs , 2011, JEAL.

[5]  Chao Chen,et al.  Persistent Homology Computation with a Twist , 2011 .

[6]  Ulrich Bauer,et al.  Clear and Compress: Computing Persistent Homology in Chunks , 2013, Topological Methods in Data Analysis and Visualization.

[7]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[8]  Thomas Lewiner,et al.  Toward Optimality in Discrete Morse Theory , 2003, Exp. Math..

[9]  Afra Zomorodian,et al.  Fast construction of the Vietoris-Rips complex , 2010, Comput. Graph..

[10]  Pawel Dlotko,et al.  Computational Topology in Text Mining , 2012, CTIC.

[11]  Alexander Russell,et al.  Computational topology: ambient isotopic approximation of 2-manifolds , 2003, Theor. Comput. Sci..

[12]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[13]  Peter John Wood,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images , 2022 .

[14]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[15]  M. Ferri,et al.  Betti numbers in multidimensional persistent homology are stable functions , 2013 .

[16]  Dmitriy Morozov,et al.  Dualities in persistent (co)homology , 2011, ArXiv.

[17]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[18]  R. Forman A USER'S GUIDE TO DISCRETE MORSE THEORY , 2002 .

[19]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.

[20]  P. Jaccard THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1 , 1912 .

[21]  Daniela Giorgi,et al.  PHOG: Photometric and geometric functions for textured shape retrieval , 2013, SGP '13.

[22]  Afra Zomorodian,et al.  Computational topology , 2010 .