Moving Objects Detection with a Moving Camera: A Comprehensive Review

During about 30 years, a lot of research teams have worked on the big challenge of detection of moving objects in various challenging environments. First applications concern static cameras but with the rise of the mobile sensors studies on moving cameras have emerged over time. In this survey, we propose to identify and categorize the different existing methods found in the literature. For this purpose, we propose to classify these methods according to the choose of the scene representation: one plane or several parts. Inside these two categories, the methods are grouped according to eight different approaches: panoramic background subtraction, dual cameras, motion compensation, subspace segmentation, motion segmentation, plane+parallax, multi planes and split image in blocks. A reminder of methods for static cameras is provided as well as the challenges with both static and moving cameras. Publicly available datasets and evaluation metrics are also surveyed in this paper.

[1]  Lucia Maddalena,et al.  Background Subtraction for Moving Object Detection in RGBD Data: A Survey , 2018, J. Imaging.

[2]  Thierry Bouwmans,et al.  Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[3]  Ming Zhu,et al.  Combining background subtraction algorithms with convolutional neural network , 2018, J. Electronic Imaging.

[4]  Thierry Bouwmans,et al.  A fuzzy approach for background subtraction , 2008, 2008 15th IEEE International Conference on Image Processing.

[5]  P. Anandan,et al.  A Unified Approach to Moving Object Detection in 2D and 3D Scenes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Gerhard Rigoll,et al.  A Deep Convolutional Neural Network for Background Subtraction , 2017, ArXiv.

[7]  Sajid Javed,et al.  Robust PCA and Robust Subspace Tracking: A Comparative Evaluation , 2018, 2018 IEEE Statistical Signal Processing Workshop (SSP).

[8]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[9]  Thierry Bouwmans,et al.  Modeling of Dynamic Backgrounds by Type-2 Fuzzy Gaussians Mixture Models , 2010 .

[10]  Matthew A. Brown,et al.  Automatic Panoramic Image Stitching using Invariant Features , 2007, International Journal of Computer Vision.

[11]  Aihua Li,et al.  Cooperative Moving Object Segmentation using Two Cameras based on Background Subtraction and Image Registration , 2014, J. Multim..

[12]  Edward H. Adelson,et al.  Representing moving images with layers , 1994, IEEE Trans. Image Process..

[13]  B. Yogameena,et al.  Foreground segmentation with PTZ camera: a survey , 2018, Multimedia Tools and Applications.

[14]  André Kaup,et al.  Compressive Online Video Background-Foreground Separation Using Multiple Prior Information and Optical Flow , 2018, J. Imaging.

[15]  Stephen Becker,et al.  Tensor Robust Principal Component Analysis: Better recovery with atomic norm regularization , 2019, 1901.10991.

[16]  T. Ebrahimi,et al.  Change detection and background extraction by linear algebra , 2001, Proc. IEEE.

[17]  Pradeep K. Khosla,et al.  Motion detection and segmentation using image mosaics , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[18]  Harish Bhaskar,et al.  On the Role and the Importance of Features for Background Modeling and Foreground Detection , 2016, Comput. Sci. Rev..

[19]  Georgios Tziritas,et al.  Adaptive detection and localization of moving objects in image sequences , 1999, Signal Process. Image Commun..

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Sarah Ostadabbas,et al.  DeepPBM: Deep Probabilistic Background Model Estimation from Video Sequences , 2019, ICPR Workshops.

[22]  Bohyung Han,et al.  Modeling and segmentation of floating foreground and background in videos , 2012, Pattern Recognit..

[23]  Kristen Grauman,et al.  FusionSeg: Learning to Combine Motion and Appearance for Fully Automatic Segmentation of Generic Objects in Videos , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  I. Du,et al.  Direct Methods , 1998 .

[25]  Wei Zhang,et al.  Local-to-global background modeling for moving object detection from non-static cameras , 2017, Multimedia Tools and Applications.

[26]  Lucia Maddalena,et al.  Stopped Object Detection by Learning Foreground Model in Videos , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[27]  Lucia Maddalena,et al.  Extensive Benchmark and Survey of Modeling Methods for Scene Background Initialization , 2017, IEEE Transactions on Image Processing.

[28]  Gustavo Silva,et al.  Jitter invariant incremental principal component pursuit for video background modeling on the TK1 , 2015, 2015 49th Asilomar Conference on Signals, Systems and Computers.

[29]  Larry S. Davis,et al.  Image-based pan-tilt camera control in a multi-camera surveillance environment , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[30]  Nam Ik Cho,et al.  Multi-scale Recurrent Encoder-Decoder Network for Dense Temporal Classification , 2018, 2018 24th International Conference on Pattern Recognition (ICPR).

[31]  Antonio Ortega,et al.  Moving object segmentation using depth and optical flow in car driving sequences , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[32]  Federico Tombari,et al.  Accurate and Efficient Background Subtraction by Monotonic Second-Degree Polynomial Fitting , 2010, 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[33]  S. B. Kang,et al.  Panoramic vision : sensors, theory, and applications , 2001 .

[34]  Ezzeddine Zagrouba,et al.  A robust framework for joint background/foreground segmentation of complex video scenes filmed with freely moving camera , 2009, Multimedia Tools and Applications.

[35]  Gonzalo Pajares,et al.  Performance Analysis of Homomorphic Systems for Image Change Detection , 2005, IbPRIA.

[36]  Eduardo A. B. da Silva,et al.  Foreground Segmentation for Anomaly Detection in Surveillance Videos Using Deep Residual Networks , 2017 .

[37]  Najoua Essoukri Ben Amara,et al.  Pedestrian detection using a moving camera: A novel framework for foreground detection , 2020, Cognitive Systems Research.

[38]  Soonam Lee,et al.  Background subtraction using the factored 3-way restricted Boltzmann machines , 2018, ArXiv.

[39]  Soon Ki Jung,et al.  Background Subtraction via Superpixel-Based Online Matrix Decomposition with Structured Foreground Constraints , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[40]  Jongin Lim,et al.  Scene conditional background update for moving object detection in a moving camera , 2017, Pattern Recognit. Lett..

[41]  Lyudmila Mihaylova,et al.  Compressive sensing approaches for autonomous object detection in video sequences , 2015, 2015 Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[42]  José Carlos Príncipe,et al.  Adaptive background estimation using an information theoretic cost for hidden state estimation , 2011, The 2011 International Joint Conference on Neural Networks.

[43]  Laura Balzano,et al.  Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Brendt Wohlberg,et al.  Incremental Principal Component Pursuit for Video Background Modeling , 2015, Journal of Mathematical Imaging and Vision.

[45]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[46]  Fatih Murat Porikli,et al.  Changedetection.net: A new change detection benchmark dataset , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[47]  M. Sigari,et al.  Fuzzy Running Average and Fuzzy Background Subtraction: Concepts and Application , 2008 .

[48]  Thierry Bouwmans,et al.  Background Modeling using Mixture of Gaussians for Foreground Detection - A Survey , 2008 .

[49]  Lucia Maddalena,et al.  Multivalued Background/Foreground Separation for Moving Object Detection , 2009, WILF.

[50]  Mao Ye,et al.  Motion detection via a couple of auto-encoder networks , 2014, 2014 IEEE International Conference on Multimedia and Expo (ICME).

[51]  Anup Basu,et al.  Motion Tracking with an Active Camera , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Sarah Ostadabbas,et al.  Background Subtraction via Fast Robust Matrix Completion , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[53]  Tomasz Kryjak,et al.  Real-time implementation of foreground object detection from a moving camera using the ViBe algorithm , 2014, Comput. Sci. Inf. Syst..

[54]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Soon Ki Jung,et al.  Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset , 2015, Comput. Sci. Rev..

[56]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Dong Liang,et al.  Co-occurrence-based adaptive background model for robust object detection , 2013, 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[58]  Serge Miguet,et al.  Real Time Foreground Object Detection using PTZ Camera , 2009, VISAPP.

[59]  Soon Ki Jung,et al.  Spatiotemporal Low-Rank Modeling for Complex Scene Background Initialization , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[60]  A. Pentland,et al.  Robust estimation of a multi-layered motion representation , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[61]  Mario Ignacio Chacon Murguia,et al.  Improvement of a neural-fuzzy motion detection vision model for complex scenario conditions , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[62]  Tao Xiang,et al.  Background Subtraction with Dirichlet Processes , 2012, ECCV.

[63]  Dong Liang,et al.  Co-occurrence probability-based pixel pairs background model for robust object detection in dynamic scenes , 2015, Pattern Recognit..

[64]  Rui Guo,et al.  Partially-Sparse Restricted Boltzmann Machine for Background Modeling and Subtraction , 2013, 2013 12th International Conference on Machine Learning and Applications.

[65]  Jake K. Aggarwal,et al.  An adaptive background model initialization algorithm with objects moving at different depths , 2008, 2008 15th IEEE International Conference on Image Processing.

[66]  K. A. Joshi,et al.  A Survey on Moving Object Detection and Tracking in Video Surveillance System , 2012 .

[67]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[68]  O. N. Ivanov Adaptation of known background subtraction methods in the case of a moving PTZ camera mounted on a mobile platform , 2014, Pattern Recognition and Image Analysis.

[69]  Paulo R. S. Mendonça,et al.  Bayesian autocalibration for surveillance , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[70]  Lucia Maddalena,et al.  Neural Background Subtraction for Pan-Tilt-Zoom Cameras , 2014, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[71]  S. N. Yaakob,et al.  Moving object extraction in PTZ camera using the integration of background subtraction and local histogram processing , 2012, 2012 International Symposium on Computer Applications and Industrial Electronics (ISCAIE).

[72]  Dar-Shyang Lee,et al.  Improved Adaptive Mixture Learning for Robust Video Background Modeling , 2002, MVA.

[73]  Soon Ki Jung,et al.  Background–Foreground Modeling Based on Spatiotemporal Sparse Subspace Clustering , 2017, IEEE Transactions on Image Processing.

[74]  David Salesin,et al.  Interactive digital photomontage , 2004, ACM Trans. Graph..

[75]  Feng Sun,et al.  Fast background subtraction for moving cameras based on nonparametric models , 2016, J. Electronic Imaging.

[76]  Lucia Maddalena,et al.  Background Model Initialization for Static Cameras , 2014 .

[77]  Marc Van Droogenbroeck,et al.  Deep background subtraction with scene-specific convolutional neural networks , 2016, 2016 International Conference on Systems, Signals and Image Processing (IWSSIP).

[78]  Marc Van Droogenbroeck,et al.  LaBGen-P: A pixel-level stationary background generation method based on LaBGen , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[79]  Marc Van Droogenbroeck,et al.  Semantic background subtraction , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[80]  Takashi Toriu,et al.  A New Background Subtraction Method Using Bivariate Poisson Process , 2014, 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing.

[81]  Lucia Maddalena,et al.  Towards Benchmarking Scene Background Initialization , 2015, ICIAP Workshops.

[82]  Kang-Hyun Jo,et al.  Dense optical flow in stabilized scenes for moving object detection from a moving camera , 2016, 2016 16th International Conference on Control, Automation and Systems (ICCAS).

[83]  Derek R. Magee,et al.  Tracking multiple vehicles using foreground, background and motion models , 2004, Image Vis. Comput..

[84]  Halimah Badioze Zaman,et al.  Enhancement of Background Subtraction Techniques Using a Second Derivative in Gradient Direction Filter , 2013, J. Electr. Comput. Eng..

[85]  Yonghyun Kim,et al.  A two-stage foreground propagation for moving object detection in a non-stationary , 2016, 2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[86]  Takeo Kanade,et al.  A System for Video Surveillance and Monitoring , 2000 .

[87]  Juan Alfonso Rosell Ortega,et al.  Background modelling in demanding situations with confidence measure , 2008, 2008 19th International Conference on Pattern Recognition.

[88]  Jean-Christophe Nebel,et al.  Vide-omics: A genomics-inspired paradigm for video analysis , 2018, Comput. Vis. Image Underst..

[89]  De Xu,et al.  Fusing Color and Gradient Features for Background Model , 2006, 2006 8th international Conference on Signal Processing.

[90]  Tao Tao,et al.  Iterative online subspace learning for robust image alignment , 2013, 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[91]  Danil Kuzin,et al.  Sparse machine learning methods for autonomous decision making , 2018 .

[92]  A. G. Amitha Perera,et al.  Moving Object Segmentation using Scene Understanding , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[93]  Lucia Maddalena,et al.  Scene background initialization: A taxonomy , 2017, Pattern Recognit. Lett..

[94]  T. J. Stonham,et al.  A system for counting people in video images using neural networks to identify the background scene , 1996, Pattern Recognit..

[95]  Soon Ki Jung,et al.  Deep Neural Network Concepts for Background Subtraction: A Systematic Review and Comparative Evaluation , 2018, Neural Networks.

[96]  B. Yogameena,et al.  Region MoG and texture descriptor-based motion segmentation under sudden illumination in continuous pan and excess zoom , 2018, Multimedia Tools and Applications.

[97]  Visvanathan Ramesh,et al.  Order consistent change detection via fast statistical significance testing , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[98]  Piotr Graszka,et al.  Median mixture model for background – foreground segmentation in video sequences , 2014 .

[99]  Yifan Zhou,et al.  Moving object detection using background subtraction for a moving camera with pronounced parallax , 2017, 2017 Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[100]  Rama Chellappa,et al.  Adaptive-Rate Compressive Sensing Using Side Information , 2014, IEEE Transactions on Image Processing.

[101]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[102]  Thierry Bouwmans,et al.  Double-constrained RPCA based on saliency maps for foreground detection in automated maritime surveillance , 2015, 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[103]  Aristodemos Pnevmatikakis,et al.  2D Person Tracking Using Kalman Filtering and Adaptive Background Learning in a Feedback Loop , 2006, CLEAR.

[104]  Thierry Bouwmans,et al.  A Fuzzy Background Modeling Approach for Motion Detection in Dynamic Backgrounds , 2012, MMSP 2012.

[105]  Lucia Maddalena,et al.  The SOBS algorithm: What are the limits? , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[106]  Ahmed M. Elgammal,et al.  A Multilayer-Based Framework for Online Background Subtraction with Freely Moving Cameras , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[107]  Shireen Elhabian,et al.  Moving Object Detection in Spatial Domain using Background Removal Techniques - State-of-Art , 2008 .

[108]  P. Anandan,et al.  Direct Recovery of Planar-Parallax from Multiple Frames , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[109]  Harpreet S. Sawhney,et al.  Layered representation of motion video using robust maximum-likelihood estimation of mixture models and MDL encoding , 1995, Proceedings of IEEE International Conference on Computer Vision.

[110]  J. Odobez,et al.  Separation of Moving Regions from Background in an Image Sequence Acquired with a Mobil Camera , 1997 .

[111]  Visvanathan Ramesh,et al.  Sudden illumination change detection using order consistency , 2004, Image Vis. Comput..

[112]  Reinhard Klette,et al.  Evaluation of an Adaptive Composite Gaussian Model in Video Surveillance , 2003, CAIP.

[113]  Chandrika Kamath,et al.  Robust Background Subtraction with Foreground Validation for Urban Traffic Video , 2005, EURASIP J. Adv. Signal Process..

[114]  Long Ang Lim,et al.  Foreground Segmentation Using a Triplet Convolutional Neural Network for Multiscale Feature Encoding , 2018, Pattern Recognit. Lett..

[115]  Mario Ignacio Chacon Murguia,et al.  An Adaptive Neural-Fuzzy Approach for Object Detection in Dynamic Backgrounds for Surveillance Systems , 2012, IEEE Transactions on Industrial Electronics.

[116]  Changzhi Lv,et al.  An updating method of self-adaptive background for moving objects detection in video , 2008, International Conferences on Audio, Language and Image Processing.

[117]  Thierry Bouwmans,et al.  Fuzzy integral for moving object detection , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[118]  Oscar Déniz-Suárez,et al.  TimeViewer, a Tool for Visualizing the Problems of the Background Subtraction , 2013, PSIVT.

[119]  Qin Li,et al.  Panoramic background model for PTZ camera , 2010, 2010 3rd International Congress on Image and Signal Processing.

[120]  Jan-Olof Eklundh,et al.  Statistical background subtraction for a mobile observer , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[121]  Ting Yu,et al.  Collaborative Real-Time Control of Active Cameras in Large Scale Surveillance Systems , 2008 .

[122]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[123]  Luc Van Gool,et al.  The 2017 DAVIS Challenge on Video Object Segmentation , 2017, ArXiv.

[124]  Yi-Ta Wu,et al.  A Hybrid Moving Object Detection Method for Aerial Images , 2010, PCM.

[125]  David Suter,et al.  A Novel Robust Statistical Method for Background Initialization and Visual Surveillance , 2006, ACCV.

[126]  Wei Liu,et al.  Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[127]  Nam Ik Cho,et al.  Learning Background Subtraction by Video Synthesis and Multi-scale Recurrent Networks , 2018, ACCV.

[128]  Ben G. Weinstein,et al.  MotionMeerkat: integrating motion video detection and ecological monitoring , 2015 .

[129]  Andrew Zisserman,et al.  Feature Based Methods for Structure and Motion Estimation , 1999, Workshop on Vision Algorithms.

[130]  Thierry Bouwmans,et al.  Background subtraction via incremental maximum margin criterion: a discriminative subspace approach , 2012, Machine Vision and Applications.

[131]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[132]  Nathan Jacobs,et al.  Motion and appearance based background subtraction for freely moving cameras , 2019, Signal Process. Image Commun..

[133]  Gian Luca Foresti,et al.  Real-time image processing for active monitoring of wide areas , 2006, J. Vis. Commun. Image Represent..

[134]  Yuntao Cui,et al.  Indoor monitoring via the collaboration between a peripheral sensor and a foveal sensor , 1998, Proceedings 1998 IEEE Workshop on Visual Surveillance.

[135]  Stuart J. Russell,et al.  Image Segmentation in Video Sequences: A Probabilistic Approach , 1997, UAI.

[136]  Fatih Murat Porikli,et al.  CDnet 2014: An Expanded Change Detection Benchmark Dataset , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[137]  Ming-hui Du,et al.  Student's t-distribution mixture background model for efficient object detection , 2012, 2012 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2012).

[138]  Jin Young Choi,et al.  Detection of moving objects with a moving camera using non-panoramic background model , 2012, Machine Vision and Applications.

[139]  Jae Wook Jeon,et al.  Change Detection by Training a Triplet Network for Motion Feature Extraction , 2019, IEEE Transactions on Circuits and Systems for Video Technology.

[140]  Z. M. Hefed Object tracking , 1999 .

[141]  Thierry Bouwmans,et al.  Background Modeling and Foreground Detection for Video Surveillance , 2014 .

[142]  Mario Ignacio Chacon Murguia,et al.  Self-adaptive SOM-CNN neural system for dynamic object detection in normal and complex scenarios , 2015, Pattern Recognit..

[143]  Thomas Brox,et al.  FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[144]  El-hadi Zahzah,et al.  Matrix and tensor completion algorithms for background model initialization: A comparative evaluation , 2017, Pattern Recognit. Lett..

[145]  Yonina C. Eldar,et al.  Reference-based compressed sensing: A sample complexity approach , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[146]  Brendt Wohlberg,et al.  Incremental Principal Component Pursuit for Video Background Modeling , 2015, Journal of Mathematical Imaging and Vision.

[147]  A. Bozzoli,et al.  A tunable algorithm to update a reference image , 2000, Signal Process. Image Commun..

[148]  Lucia Maddalena,et al.  A Self-organizing Approach to Detection of Moving Patterns for Real-Time Applications , 2007, BVAI.

[149]  Kenichi Kanatani,et al.  Extracting Moving Objects from a Moving Camera VideoSequence , 2005 .

[150]  Nizar Bouguila,et al.  Online variational learning of finite Dirichlet mixture models , 2012, Evol. Syst..

[151]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[152]  Massimo De Gregorio,et al.  Background estimation by weightless neural networks , 2017, Pattern Recognit. Lett..

[153]  Alper Yilmaz,et al.  Background subtraction for the moving camera: A geometric approach , 2014, Comput. Vis. Image Underst..

[154]  Luigi di Stefano,et al.  An effective real-time mosaicing algorithm apt to detect motion through background subtraction using a PTZ camera , 2005, IEEE Conference on Advanced Video and Signal Based Surveillance, 2005..

[155]  Özge Öztimur Karadag,et al.  Evaluation of the robustness of deep features on the change detection problem , 2018, 2018 26th Signal Processing and Communications Applications Conference (SIU).

[156]  Mario Ignacio Chacon Murguia,et al.  Simplified SOM-neural model for video segmentation of moving objects , 2009, 2009 International Joint Conference on Neural Networks.

[157]  Juan D. Pulgarin-Giraldo,et al.  GMM Background Modeling Using Divergence-Based Weight Updating , 2016, CIARP.

[158]  Samah Ramadan,et al.  Using Time Series Analysis to Visualize and Evaluate Background Subtraction Results for Computer Vision Applications , 2006 .

[159]  Chin-Seng Chua,et al.  Statistical background modeling for non-stationary camera , 2003, Pattern Recognit. Lett..

[160]  Huiyu Zhou,et al.  Spatial mixture of Gaussians for dynamic background modelling , 2013, 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[161]  Claiton de Oliveira,et al.  Challenging situations for background subtraction algorithms , 2018, Applied Intelligence.

[162]  Rui Caseiro,et al.  Background Modelling on Tensor Field for Foreground Segmentation , 2010, BMVC.

[163]  Badrinath Roysam,et al.  Image change detection algorithms: a systematic survey , 2005, IEEE Transactions on Image Processing.

[164]  Yu Liu,et al.  Background Subtraction for Moving Cameras Based on Trajectory-controlled Segmentation and Label Inference , 2015, KSII Trans. Internet Inf. Syst..

[165]  Dong Liang,et al.  Robust Object Detection in Severe Imaging Conditions using Co-Occurrence Background Model , 2014 .

[166]  James W. Davis,et al.  A Multi-transformational Model for Background Subtraction with Moving Cameras , 2014, ECCV.

[167]  Matthieu Molinier,et al.  3D-Connected Components Analysis for Traffic Monitoring in Image Sequences Acquired from a Helicopter , 2005, SCIA.

[168]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[169]  Zhiming Luo,et al.  Interactive deep learning method for segmenting moving objects , 2017, Pattern Recognit. Lett..

[170]  Atsushi Nakazawa,et al.  Motion Coherent Tracking Using Multi-label MRF Optimization , 2012, International Journal of Computer Vision.

[171]  Mario Ignacio Chacon Murguia,et al.  Self-organizing retinotopic maps applied to background modeling for dynamic object segmentation in video sequences , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[172]  Zize Liang,et al.  An adaptive mixture Gaussian background model with online background reconstruction and adjustable foreground mergence time for motion segmentation , 2005, 2005 IEEE International Conference on Industrial Technology.

[173]  Bertrand Vachon,et al.  Statistical Background Modeling for Foreground Detection: A Survey , 2010 .

[174]  Thierry Bouwmans,et al.  Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance , 2014, Comput. Vis. Image Underst..

[175]  Deepu Rajan,et al.  Challenges in video based object detection in maritime scenario using computer vision , 2016, ArXiv.

[176]  Til Aach,et al.  Illumination-Invariant Change Detection Using a Statistical Colinearity Criterion , 2001, DAGM-Symposium.

[177]  Marc Van Droogenbroeck,et al.  LaBGen-P-Semantic: A First Step for Leveraging Semantic Segmentation in Background Generation , 2018, J. Imaging.

[178]  Federico Tombari,et al.  Non-linear parametric Bayesian regression for robust background subtraction , 2009, 2009 Workshop on Motion and Video Computing (WMVC).

[179]  Atsushi Shimada,et al.  Reconstruction-Based Change Detection with Image Completion for a Free-Moving Camera , 2018, Sensors.

[180]  Hyun Wook Park,et al.  A Disparity-Based Adaptive Multihomography Method for Moving Target Detection Based on Global Motion Compensation , 2016, IEEE Transactions on Circuits and Systems for Video Technology.

[181]  Rama Chellappa,et al.  Adaptive rate compressive sensing for background subtraction , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[182]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[183]  Elena Stringa Morphological Change Detection Algorithms for Surveillance Applications , 2000, BMVC.

[184]  Til Aach,et al.  Bayesian spatio-temporal motion detection under varying illumination , 2000, 2000 10th European Signal Processing Conference.

[185]  Paul W. Fieguth,et al.  Real-Time Embedded Motion Detection via Neural Response Mixture Modeling , 2018, J. Signal Process. Syst..

[186]  Yu Liu,et al.  Fast ℓ1-minimization algorithm for robust background subtraction , 2016, EURASIP J. Image Video Process..

[187]  Paul Rodríguez,et al.  Incremental Principal Component Pursuit for Video Background Modeling , 2016, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[188]  Lucia Maddalena,et al.  A Self-organizing Neural System for Background and Foreground Modeling , 2008, ICANN.

[189]  Jitendra Malik,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Segmentation of Moving Objects by Long Term Video Analysis , 2022 .

[190]  Namrata Vaswani,et al.  A Fast and Memory-Efficient Algorithm for Robust PCA (MEROP) , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[191]  Xiaofei Wang,et al.  Fast moving object detection with non-stationary background , 2012, Multimedia Tools and Applications.

[192]  Guillaume-Alexandre Bilodeau,et al.  A Self-Adjusting Approach to Change Detection Based on Background Word Consensus , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[193]  Mongi A. Abidi,et al.  Heterogeneous Fusion of Omnidirectional and PTZ Cameras for Multiple Object Tracking , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[194]  F. Porikli,et al.  Change Detection by Frequency Decomposition: Wave-Back , 2005 .

[195]  Michael Goesele,et al.  Background Subtraction With Real-Time Semantic Segmentation , 2018, IEEE Access.

[196]  Lucia Maddalena,et al.  A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications , 2008, IEEE Transactions on Image Processing.

[197]  Ezequiel López-Rubio,et al.  Foreground detection for moving cameras with stochastic approximation , 2015, Pattern Recognit. Lett..

[198]  Biswajit Bose,et al.  From video sequences to motion panoramas , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[199]  Shimeng Yu,et al.  Motion background modeling based on context-encoder , 2016, 2016 Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR).

[200]  M.M. Trivedi,et al.  Vision modules for a multi-sensory bridge monitoring approach , 2004, Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749).

[201]  Hans-Peter Seidel,et al.  Free-viewpoint video of human actors , 2003, ACM Trans. Graph..

[202]  Ashish Ghosh,et al.  Real-Time Adaptive Histogram Min-Max Bucket (HMMB) Model for Background Subtraction , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[203]  Kenichi Kanatani Optimal Homography Computation with a Reliability Measure , 1998, MVA.

[204]  Rensso Mora Colque,et al.  Progressive Background Image Generation of Surveillance Traffic Videos Based on a Temporal Histogram Ruled by a Reward/Penalty Function , 2011, SIBGRAPI.

[205]  Truong Q. Nguyen,et al.  Moving Object Detection With a Freely Moving Camera via Background Motion Subtraction , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[206]  Soon Ki Jung,et al.  Stochastic decomposition into low rank and sparse tensor for robust background subtraction , 2015, ICDP.

[207]  Til Aach,et al.  Illumination-invariant change detection , 2000, 4th IEEE Southwest Symposium on Image Analysis and Interpretation.

[208]  Radu Vasiu,et al.  The detection of moving objects in video by background subtraction using Dempster-Shafer theory , 2015 .

[209]  Mubarak Shah,et al.  COCOA: tracking in aerial imagery , 2006, SPIE Defense + Commercial Sensing.

[210]  Thierry Bouwmans,et al.  Subspace Learning for Background Modeling: A Survey , 2009 .

[211]  Mehran Yazdi,et al.  New trends on moving object detection in video images captured by a moving camera: A survey , 2018, Comput. Sci. Rev..

[212]  Thierry Bouwmans,et al.  Type-2 Fuzzy Mixture of Gaussians Model: Application to Background Modeling , 2008, ISVC.

[213]  Alessandro Bevilacqua,et al.  High-Quality Real Time Motion Detection Using PTZ Cameras , 2006, 2006 IEEE International Conference on Video and Signal Based Surveillance.

[214]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interaction , 1999, ICVS.

[215]  Namrata Vaswani,et al.  Practical ReProCS for separating sparse and low-dimensional signal sequences from their sum — Part 1 , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[216]  Mark E Hallenbeck,et al.  Extracting Roadway Background Image , 2006 .

[217]  Concetto Spampinato,et al.  Adaptive Background Modeling Integrated With Luminosity Sensors and Occlusion Processing for Reliable Vehicle Detection , 2011, IEEE Transactions on Intelligent Transportation Systems.

[218]  Long Ang Lim,et al.  Learning multi-scale features for foreground segmentation , 2018, Pattern Analysis and Applications.

[219]  K. P. Karmann,et al.  Moving object recognition using an adaptive background memory , 1990 .

[220]  Mubarak Shah,et al.  Automatically Tuning Background Subtraction Parameters using Particle Swarm Optimization , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[221]  Claudio Piciarelli,et al.  Stereo Localization Using Dual PTZ Cameras , 2009, CAIP.

[222]  Hongpu Hu,et al.  Automatic Moving Object Segmentation for Freely Moving Cameras , 2014 .

[223]  Hongxun zhang,et al.  Fusing Color and Texture Features for Background Model , 2006, FSKD.

[224]  Thierry Bouwmans,et al.  Background Subtraction For Visual Surveillance: A Fuzzy Approach , 2012 .

[225]  Matthew Berger,et al.  Subspace Tracking under Dynamic Dimensionality for Online Background Subtraction , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[226]  Harpreet S. Sawhney,et al.  Independent motion detection in 3D scenes , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[227]  Luc Van Gool,et al.  The 2019 DAVIS Challenge on VOS: Unsupervised Multi-Object Segmentation , 2019, ArXiv.

[228]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[229]  Raj Rao Nadakuditi,et al.  Panoramic Robust PCA for Foreground–Background Separation on Noisy, Free-Motion Camera Video , 2017, IEEE Transactions on Computational Imaging.

[230]  Luigi Cinque,et al.  A keypoint-based method for background modeling and foreground detection using a PTZ camera , 2017, Pattern Recognit. Lett..

[231]  Lixing Zhao,et al.  Study on moving-object-detection arithmetic based on W4 theory , 2011, 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC).

[232]  Daniel P. Huttenlocher,et al.  Scene modeling for wide area surveillance and image synthesis , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[233]  Atsushi Shimada,et al.  Adaptive background model registration for moving cameras , 2017, Pattern Recognit. Lett..

[234]  Volkan Cevher,et al.  Compressive Sensing for Background Subtraction , 2008, ECCV.

[235]  Yongtian Wang,et al.  A framework of surveillance system using a PTZ camera , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[236]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[237]  Bohyung Han,et al.  Generalized background subtraction based on hybrid inference by belief propagation and Bayesian filtering , 2011, 2011 International Conference on Computer Vision.

[238]  Tao Tao,et al.  Iterative Grassmannian optimization for robust image alignment , 2013, Image Vis. Comput..

[239]  Yingzi Du,et al.  Iris Recognition: The Consequences of Image Compression , 2010, EURASIP J. Adv. Signal Process..

[240]  Sajid Javed,et al.  Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery , 2017, IEEE Signal Processing Magazine.

[241]  Matteo Matteucci,et al.  Background subtraction by combining Temporal and Spatio-Temporal histograms in the presence of camera movement , 2013, Machine Vision and Applications.

[242]  Karteek Alahari,et al.  Learning Video Object Segmentation with Visual Memory , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[243]  Yang Yu,et al.  Online Background-Subtraction with Motion Compensation for Freely Moving Camera , 2016, ICIC.

[244]  Vittorio Murino,et al.  Background Subtraction for Automated Multisensor Surveillance: A Comprehensive Review , 2010, EURASIP J. Adv. Signal Process..

[245]  Thierry Bouwmans,et al.  Comparison of Matrix Completion Algorithms for Background Initialization in Videos , 2015, ICIAP Workshops.

[246]  Soon Ki Jung,et al.  Online Stochastic Tensor Decomposition for Background Subtraction in Multispectral Video Sequences , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[247]  El-hadi Zahzah,et al.  Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing , 2016 .

[248]  Yee-Hong Yang,et al.  Stationary background generation: An alternative to the difference of two images , 1990, Pattern Recognit..

[249]  Jean-Marc Lavest,et al.  Background subtraction adapted to PTZ cameras by keypoint density estimation , 2010, BMVC.

[250]  Guillaume-Alexandre Bilodeau,et al.  Flexible Background Subtraction with Self-Balanced Local Sensitivity , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[251]  Xiaoqing Ding,et al.  Beyond dominant plane assumption: Moving objects detection in severe dynamic scenes with Multi-Classes RANSAC , 2012, 2012 International Conference on Audio, Language and Image Processing.

[252]  Francisco J. Gallegos Funes,et al.  A Gaussian-Median Filter for Moving Objects Segmentation Applied for Static Scenarios , 2018, IntelliSys.

[253]  Allen R. Hanson,et al.  Coherent Motion Segmentation in Moving Camera Videos Using Optical Flow Orientations , 2013, 2013 IEEE International Conference on Computer Vision.

[254]  Wilfried Philips,et al.  Robust Pan/Tilt Compensation for Foreground–Background Segmentation , 2019, Sensors.

[255]  Thierry Bouwmans,et al.  Foreground Detection Using the Choquet Integral , 2008, 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services.

[256]  Krishnan Kutty,et al.  Background Modelling from a Moving Camera , 2015 .

[257]  Gregory D. Hager,et al.  Multiple kernel tracking with SSD , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[258]  Deepu Rajan,et al.  Video Processing From Electro-Optical Sensors for Object Detection and Tracking in a Maritime Environment: A Survey , 2016, IEEE Transactions on Intelligent Transportation Systems.

[259]  P. KaewTrakulPong,et al.  An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .

[260]  Deepu Rajan,et al.  Are Object Detection Assessment Criteria Ready for Maritime Computer Vision? , 2018, IEEE Transactions on Intelligent Transportation Systems.

[261]  Paul L. Rosin,et al.  Evaluation of global image thresholding for change detection , 2003, Pattern Recognit. Lett..

[262]  Hyung Jin Chang,et al.  Detection of Moving Objects with Non-stationary Cameras in 5.8ms: Bringing Motion Detection to Your Mobile Device , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[263]  P. Anandan,et al.  Efficient representations of video sequences and their applications , 1996, Signal Process. Image Commun..

[264]  Lucia Maddalena,et al.  Neural Model-Based Segmentation of Image Motion , 2008, KES.

[265]  Erik G. Learned-Miller,et al.  It's Moving! A Probabilistic Model for Causal Motion Segmentation in Moving Camera Videos , 2016, ECCV.

[266]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[267]  Takashi Shibata,et al.  Moving-object detection method for moving cameras by merging background subtraction and optical flow methods , 2017, 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[268]  Nicos G. Pavlidis,et al.  The effect of recovery algorithms on compressive sensing background subtraction , 2013, 2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[269]  J. Soraghan,et al.  Video analytics for panning camera in dynamic surveillance environment , 2008, 2008 50th International Symposium ELMAR.

[270]  Matthew A. Brown,et al.  Recognising panoramas , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[271]  Soon Ki Jung,et al.  Motion-Aware Graph Regularized RPCA for background modeling of complex scenes , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[272]  Mingjun Wu,et al.  Segmenting moving objects from a freely moving camera with an effective segmentation cue , 2011 .

[273]  René Vidal,et al.  A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[274]  Thierry Bouwmans,et al.  Background Subtraction in Real Applications: Challenges, Current Models and Future Directions , 2019, Comput. Sci. Rev..

[275]  Zheng Zhu,et al.  An Efficient Optical Flow Based Motion Detection Method for Non-stationary Scenes , 2018, 2019 Chinese Control And Decision Conference (CCDC).

[276]  Lucia Maddalena,et al.  Self Organizing and Fuzzy Modelling for Parked Vehicles Detection , 2009, ACIVS.

[277]  Ben. G. Weinstein A computer vision for animal ecology. , 2018, The Journal of animal ecology.

[278]  S. Pittman,et al.  PelagiCam: a novel underwater imaging system with computer vision for semi-automated monitoring of mobile marine fauna at offshore structures , 2019, Environmental Monitoring and Assessment.

[279]  Jitendra Malik,et al.  Object Segmentation by Long Term Analysis of Point Trajectories , 2010, ECCV.

[280]  Haibo Hu,et al.  Background Subtraction Based on Integration of Alternative Cues in Freely Moving Camera , 2019, IEEE Transactions on Circuits and Systems for Video Technology.

[281]  Yi Yang,et al.  Dynamic Background Learning through Deep Auto-encoder Networks , 2014, ACM Multimedia.

[282]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[283]  Vassilios Morellas,et al.  Robust Foreground Detection In Video Using Pixel Layers , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[284]  Michal Irani,et al.  Recovery of Ego-Motion Using Region Alignment , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[285]  Macario Cordel,et al.  Convolutional neural network for vehicle detection in low resolution traffic videos , 2016, 2016 IEEE Region 10 Symposium (TENSYMP).

[286]  Zhongfei Zhang,et al.  Deep learning driven blockwise moving object detection with binary scene modeling , 2015, Neurocomputing.

[287]  Marc Van Droogenbroeck,et al.  LaBGen: A method based on motion detection for generating the background of a scene , 2017, Pattern Recognit. Lett..

[288]  Jenny Benois-Pineau,et al.  Detection of moving foreground objects in videos with strong camera motion , 2011, Pattern Analysis and Applications.

[289]  Fatih Porikli,et al.  Human Body Tracking by Adaptive Background Models and Mean-Shift Analysis , 2003 .

[290]  Thierry Bouwmans,et al.  Comparison of Background Subtraction Methods for a Multimedia Learning Space , 2016, SIGMAP.

[291]  Chang-Su Kim,et al.  Background subtraction using encoder-decoder structured convolutional neural network , 2017, 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[292]  Sarah Ostadabbas,et al.  Moving Object Detection Through Robust Matrix Completion Augmented With Objectness , 2018, IEEE Journal of Selected Topics in Signal Processing.

[293]  Bohyung Han,et al.  Generalized Background Subtraction Using Superpixels with Label Integrated Motion Estimation , 2014, ECCV.

[294]  Luc Van Gool,et al.  A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[295]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[296]  Jin Young Choi,et al.  Robust and fast moving object detection in a non-stationary camera via foreground probability based sampling , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[297]  Radu Horaud,et al.  Camera cooperation for achieving visual attention , 2005, Machine Vision and Applications.

[298]  Til Aach,et al.  Bayesian algorithms for adaptive change detection in image sequences using Markov random fields , 1995, Signal Process. Image Commun..

[299]  Thierry Bouwmans,et al.  Traditional and recent approaches in background modeling for foreground detection: An overview , 2014, Comput. Sci. Rev..

[300]  Til Aach,et al.  Statistical model-based change detection in moving video , 1993, Signal Process..

[301]  Xavier Binefa,et al.  Real-Time Motion Detection for a Mobile Observer Using Multiple Kernel Tracking and Belief Propagation , 2009, IbPRIA.

[302]  R. Vasiu,et al.  Background Modeling and Foreground Detection via a Reconstructive and Discriminative Subspace Learning Approach , 2012 .

[303]  Takeo Kanade,et al.  Background Subtraction for Freely Moving Cameras , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[304]  Yue Liu,et al.  Panoramic Gaussian Mixture Model and large-scale range background substraction method for PTZ camera-based surveillance systems , 2013, Machine Vision and Applications.

[305]  Lucia Maddalena,et al.  3D Neural Model-Based Stopped Object Detection , 2009, ICIAP.

[306]  Long Ang Lim,et al.  Foreground segmentation using convolutional neural networks for multiscale feature encoding , 2018, Pattern Recognit. Lett..

[307]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[308]  Wu-Chih Hu,et al.  Moving object detection and tracking from video captured by moving camera , 2015, J. Vis. Commun. Image Represent..

[309]  Lucia Maddalena,et al.  A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection , 2010, Neural Computing and Applications.

[310]  Tarak Gandhi,et al.  Computer Vision for Multi-Sensory Structural Health Monitoring System * , 2004 .

[311]  Q. M. Jonathan Wu,et al.  Real-time Video Segmentation using Student's t Mixture Model , 2012 .

[312]  Lyudmila Mihaylova,et al.  Spatio-Temporal Structured Sparse Regression With Hierarchical Gaussian Process Priors , 2018, IEEE Transactions on Signal Processing.

[313]  Zulaikha Kadim,et al.  Method to Detect and Track Moving Object in Non-static PTZ Camera , .

[314]  Enhong Chen,et al.  Temporally Adaptive Restricted Boltzmann Machine for Background Modeling , 2015, AAAI.

[315]  Lucia Maddalena,et al.  The 3dSOBS+ algorithm for moving object detection , 2014, Comput. Vis. Image Underst..

[316]  Takayuki Hamamoto,et al.  Online background subtraction with freely moving cameras using different motion boundaries , 2018, Image Vis. Comput..

[317]  Thierry Bouwmans,et al.  Background Modeling via Incremental Maximum Margin Criterion , 2010, ACCV Workshops.

[318]  Kang-Hyun Jo,et al.  Moving Object Detection for a Moving Camera Based on Global Motion Compensation and Adaptive Background Model , 2019, International Journal of Control, Automation and Systems.

[319]  Til Aach,et al.  Change Detection in Image Sequences Using Gibbs Random Fields , 1993 .

[320]  Ahmed M. Elgammal,et al.  Online Moving Camera Background Subtraction , 2012, ECCV.

[321]  Ming Tang,et al.  Joint background reconstruction and foreground segmentation via a two-stage convolutional neural network , 2017, 2017 IEEE International Conference on Multimedia and Expo (ICME).

[322]  Somnath Sengupta,et al.  Interval-Valued Model Level Fuzzy Aggregation-Based Background Subtraction , 2017, IEEE Transactions on Cybernetics.

[323]  Brendt Wohlberg,et al.  Endogenous convolutional sparse representations for translation invariant image subspace models , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[324]  Atsushi Shimada,et al.  Real-Time Foreground Segmentation from Moving Camera Based on Case-Based Trajectory Classification , 2013, 2013 2nd IAPR Asian Conference on Pattern Recognition.

[325]  Wenlong Zhang,et al.  Moving Object Detection under a Moving Camera via Background Orientation Reconstruction , 2020, Sensors.

[326]  Mongi A. Abidi,et al.  Real-time video tracking using PTZ cameras , 2003, International Conference on Quality Control by Artificial Vision.

[327]  Fernando López-García,et al.  Background Modeling with Motion Criterion and Multi-modal Support , 2016, VISAPP.

[328]  Alan M. McIvor,et al.  Background Subtraction Techniques , 2000 .

[329]  Paulo R. S. Mendonça,et al.  Autocalibration from Tracks of Walking People , 2006, BMVC.

[330]  Marc Van Droogenbroeck,et al.  ViBE: A powerful random technique to estimate the background in video sequences , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[331]  Jen-Hui Chuang,et al.  A probabilistic SVM approach for background scene initialization , 2002, Proceedings. International Conference on Image Processing.

[332]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[333]  Christopher R. Wren,et al.  Waviz : Spectral Similarity for Object Detection , 2004 .

[334]  Alessandro Rozza,et al.  A novel background subtraction approach based on multi layered self-organizing maps , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[335]  Paul W. Fieguth,et al.  Embedded Motion Detection via Neural Response Mixture Background Modeling , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[336]  Huijun Di,et al.  Background modeling from a free-moving camera by Multi-Layer Homography Algorithm , 2008, 2008 15th IEEE International Conference on Image Processing.

[337]  Hefeng Wu,et al.  Hierarchical Ensemble of Background Models for PTZ-Based Video Surveillance , 2015, IEEE Transactions on Cybernetics.

[338]  Nizar Bouguila,et al.  Finite asymmetric generalized Gaussian mixture models learning for infrared object detection , 2013, Comput. Vis. Image Underst..

[339]  Yi-Tung Chan,et al.  Deep learning-based scene-awareness approach for intelligent change detection in videos , 2019, J. Electronic Imaging.

[340]  Atsushi Shimada,et al.  Adaptive search of background models for object detection in images taken by moving cameras , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[341]  Thierry Bouwmans,et al.  Background modeling via a supervised subspace learning , 2010 .

[342]  Stefano Messelodi,et al.  A Kalman Filter Based Background Updating Algorithm Robust to Sharp Illumination Changes , 2005, ICIAP.