Computing Blocker Sets for the Regular Post Embedding Problem

Blocker and coblocker sets are regular languages involved in the algorithmic solution of the Regular Post Embedding Problem. We investigate the computability of these languages and related decision problems.

[1]  L. H. Haines On free monoids partially ordered by embedding , 1969 .

[2]  P. Schnoebelen,et al.  The ω-Regular Post Embedding Problem ⋆ , 2008 .

[3]  Parosh Aziz Abdulla,et al.  Using Forward Reachability Analysis for Verification of Lossy Channel Systems , 2004, Formal Methods Syst. Des..

[4]  Jean Goubault-Larrecq,et al.  Forward Analysis for WSTS, Part II: Complete WSTS , 2009, ICALP.

[5]  Jan van Leeuwen,et al.  Effective constructions in well-partially- ordered free monoids , 1978, Discret. Math..

[6]  Philippe Schnoebelen,et al.  Post Embedding Problem Is Not Primitive Recursive, with Applications to Channel Systems , 2007, FSTTCS.

[7]  Philippe Schnoebelen,et al.  The omega-Regular Post Embedding Problem , 2008, FoSSaCS.

[8]  Sanjiva Prasad,et al.  FSTTCS 2007: Foundations of Software Technology and Theoretical Computer Science, 27th International Conference, New Delhi, India, December 12-14, 2007, Proceedings , 2007, FSTTCS.

[9]  Philippe Schnoebelen,et al.  Toward a Compositional Theory of Leftist Grammars and Transformations , 2010, FoSSaCS.

[10]  T. Jurdzinski,et al.  Leftist Grammars are Nonprimitive Recursive ⋆ , 2008 .

[11]  Richard Mayr,et al.  Undecidable problems in unreliable computations , 2000, Theor. Comput. Sci..

[12]  Parosh Aziz Abdulla,et al.  Universality Analysis for One-Clock Timed Automata , 2009, Fundam. Informaticae.

[13]  Jean Goubault-Larrecq,et al.  Forward analysis for WSTS, part I: completions , 2009, Mathematical Structures in Computer Science.

[14]  Frank Wolter,et al.  Non-primitive recursive decidability of products of modal logics with expanding domains , 2006, Ann. Pure Appl. Log..

[15]  Jean Goubault-Larrecq,et al.  On a Generalization of a Result by Valk and Jantzen , 2009 .

[16]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[17]  AbdullaParosh Aziz,et al.  Universality Analysis for One-Clock Timed Automata , 2008 .

[18]  Pascal Weil,et al.  Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.

[19]  Philippe Schnoebelen,et al.  The Ordinal Recursive Complexity of Lossy Channel Systems , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[20]  Tomasz Jurdzinski Leftist Grammars Are Non-primitive Recursive , 2008, ICALP.

[21]  Philippe Schnoebelen,et al.  Pumping and Counting on the Regular Post Embedding Problem , 2010, ICALP.

[22]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[23]  Slawomir Lasota,et al.  Alternating timed automata , 2005, TOCL.

[24]  Joël Ouaknine,et al.  On the decidability and complexity of Metric Temporal Logic over finite words , 2007, Log. Methods Comput. Sci..