Intravascular Palpography for High-Risk Vulnerable Plaque Assessment

Background:The composition of an atherosclerotic plaque is considered more important than the degree of stenosis. An unstable lesion may rupture and cause an acute thrombotic reaction. Most of these lesions contain a large lipid pool covered by an inflamed thin fibrous cap. The stress in the cap increases with decreasing cap thickness and increasing macrophage infiltration. Intravascular ultrasound (IVUS) palpography might be an ideal technique to assess the mechanical properties of high-risk plaques.Technique:Palpography assesses the local mechanical properties of tissue using its deformation caused by the intraluminal pressure.In Vitro Validation:The technique was validated in vitro using diseased human coronary and femoral arteries. Especially between fibrous and fatty tissue, a highly significant difference in strain (p = 0.0012) was found. Additionally, the predictive value to identify the vulnerable plaque was investigated. A high-strain region at the lumen-vessel wall boundary has an 88% sensitivity and 89% specificity for identifying such plaques.In Vivo Validation:In vivo, the technique was validated in an atherosclerotic Yucatan minipig animal model. This study also revealed higher strain values in fatty than fibrous plaques (p < 0.001). The presence of a high-strain region at the lumenplaque interface has a high predictive value to identify macrophages.Patient Studies:Patient studies revealed high-strain values (1–2%) in thin-cap fibrous atheroma. Calcified material showed low strain values (0–0.2%). With the development of three-dimensional (3-D) palpography, identification of highstrain spots over the full length of a coronary artery becomes available.Conclusion:Intravascular palpography is a unique tool to assess lesion composition and vulnerability. The development of 3-D palpography provides a technique that may develop into a clinical tool to identify the high-risk plaque.Hintergrund:Die Zusammensetzung einer atherosklerotischen Plaque wird als wichtiger erachtet als deren Stenosegrad. Eine instabile Läsion kann aufbrechen und eine thrombotische Reaktion auslösen. Die Mehrzahl dieser Läsionen enthält einen großen lipidreichen Kern, der von einer dünnen entzündeten Kappe bedeckt ist. Der Stress in der Kappe erhöht sich mit abnehmender Dicke der Kappe und zunehmender Makrophageninfiltration. Die intravaskuläre Ultraschall- (IVUS-)Palpographie könnte die ideale Technik zur Beurteilung der mechanischen Eigenschaften von Hochrisikoplaques darstellen.Technik:Die Palpographie erfasst die lokalen mechanischen Eigenschaften von Gewebe mit Hilfe der durch den intravaskulären Druck erzeugten Deformation.In-vitro-Validierung:Die Methode wurde durch Untersuchung erkrankter Koronar- und Femoralarterien validiert. Insbesondere zwischen fibrösem und fetthaltigem Gewebe ließ sich ein hochsignifikanter Unterschied bezüglich der Gewebsdehnung feststellen (p = 0,0012). Zudem wurde der prädiktive Wert für die Diagnose einer vulnerablen Plaque untersucht. Eine Stelle mit hoher Dehnung an der Gefäßoberfläche hat eine Sensitivität von 88% und eine Spezifität von 89% für die Erkennung solcher Plaques.In-vivo-Validierung:In vivo wurde die Technik in einem atherosklerotischen Yucatan-Minischwein-Modell validiert. Auch diese Untersuchung zeigte höhere Dehnungswerte in fetthaltigen gegenüber fibrösen Plaques (p < 0,001). Zudem hat das Vorliegen hoher Dehnungswerte an der Plaqueoberfläche einen hohen prädiktiven Wert für die Erkennung von Makrophagen.Patientenstudien:Patientenstudien ergaben hohe Dehnungswerte (1–2%) in fetthaltigen Plaques mit dünner Kappe. Kalzifiziertes Material zeigte niedrige Dehnungswerte (0–0,2%). Durch die Entwicklung der dreidimensionalen (3-D) Palpographie wird die Identifikation von Stellen mit hohen Dehnungswerten im kompletten Koronarsystem möglich.Schlussfolgerung:Wie keine andere Methode gestattet die intravaskuläre Palpographie, Zusammensetzung und Vulnerabilität einer Läsion zu beurteilen. Die Entwicklung der 3-D-Palpographie stellt eine Technik zur Verfügung, die sich zu einem klinischen Hilfsmittel zur Identifizierung von Hochrisikoplaques entwickeln könnte.

[1]  M. Bertrand,et al.  Forward and Inverse Problems in Endovascular Elastography , 1997 .

[2]  N Bom,et al.  Morphological and mechanical information of coronary arteries obtained with intravascular elastography; feasibility study in vivo. , 2002, European heart journal.

[3]  G. Berry,et al.  Tissue characterization of atherosclerotic plaques by intravascular ultrasound radiofrequency signal analysis: an in vitro study of human coronary arteries. , 2000, American heart journal.

[4]  F Prati,et al.  Correlation between high frequency intravascular ultrasound and histomorphology in human coronary arteries , 2001, Heart.

[5]  M. Davies,et al.  Atherosclerotic plaque caps are locally weakened when macrophages density is increased. , 1991, Atherosclerosis.

[6]  L. Gibson,et al.  Static circumferential tangential modulus of human atherosclerotic tissue. , 1994, Journal of biomechanics.

[7]  J. Ophir,et al.  Methods for Estimation of Subsample Time Delays of Digitized Echo Signals , 1995 .

[8]  P. Serruys,et al.  Intracoronary elastography in the catheterisation laboratory: preliminary patient results , 1999, 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027).

[9]  J. Ophir,et al.  Elastography: Elasticity Imaging Using Ultrasound with Application to Muscle and Breast in Vivo , 1993, Ultrasonic imaging.

[10]  T. Karino,et al.  Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. , 1990, Circulation research.

[11]  Frits Mastik,et al.  Identification of Atherosclerotic Plaque Components With Intravascular Ultrasound Elastography In Vivo: A Yucatan Pig Study , 2002, Circulation.

[12]  P. Serruys,et al.  True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. , 2000, Circulation.

[13]  P. Serruys,et al.  Nigh resolution IVUS elastography in patients , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[14]  J. Ophir,et al.  Methods for estimation of subsample time delays of digitized echo signals. , 1995, Ultrasonic imaging.

[15]  N Bom,et al.  Advancing intravascular ultrasonic palpation toward clinical applications. , 2001, Ultrasound in medicine & biology.

[16]  C. Tracy,et al.  American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. , 2001, Journal of the American College of Cardiology.

[17]  R. Kamm,et al.  Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions A Structural Analysis With Histopathological Correlation , 1993, Circulation.

[18]  V. Fuster,et al.  Coronary plaque disruption. , 1995, Circulation.

[19]  J. Badimón,et al.  Atherosclerotic plaque rupture and thrombosis. Evolving concepts. , 1990, Circulation.

[20]  M. Matsuzaki,et al.  Detection of Fibrous Cap in Atherosclerotic Plaque by Intravascular Ultrasound by Use of Color Mapping of Angle-Dependent Echo-Intensity Variation , 2001, Circulation.

[21]  Chris L de Korte,et al.  Intravascular ultrasound elastography: an overview. , 2002, Ultrasonics.

[22]  V. Fuster,et al.  Macrophage Infiltration in Acute Coronary Syndromes: Implications for Plaque Rupture , 1994, Circulation.

[23]  G. V. R. Born,et al.  INFLUENCE OF PLAQUE CONFIGURATION AND STRESS DISTRIBUTION ON FISSURING OF CORONARY ATHEROSCLEROTIC PLAQUES , 1989, The Lancet.

[24]  C.L. De Korte,et al.  Image artifacts in intravascular elastography , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[25]  S. Alper,et al.  Hemodynamic shear stress and its role in atherosclerosis. , 1999, JAMA.

[26]  J. Ophir,et al.  Three-dimensional tissue motion and its effect on image noise in elastography , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[27]  Chris L. de Korte,et al.  Intravascular ultrasound elastography: an overview. , 2002 .

[28]  R D Kamm,et al.  Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. , 1992, Circulation research.

[29]  J. Ophir,et al.  Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues , 1991, Ultrasonic imaging.

[30]  J. Ophir,et al.  A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson's ratios in tissues. , 1998, Ultrasound in medicine & biology.

[31]  R D Kamm,et al.  Mechanical properties of model atherosclerotic lesion lipid pools. , 1994, Arteriosclerosis and thrombosis : a journal of vascular biology.