Directional control of narrow-band thermal emission from nanoantennas

Abstract. We investigate the directional control of narrow-band perfect thermal emission using a nanoscale Yagi–Uda antenna. Although Yagi–Uda antennas were demonstrated to achieve directional control in the optical and radio frequency regimes, they have not been applied for thermal infrared emission. Here, by coupling a nanoscale thermal emitter into a Yagi–Uda antenna, we demonstrate strong directional control of thermal emission with a narrow-band spectrum at the nanoscale. By exploring the effects of the reflector and the director of a Yagi–Uda antenna, the forward emission enhancement factor up to 8.3 is achieved through geometry optimization.

[1]  Shiyan Wang,et al.  Analysis and design of sea‐water monopole Yagi‐Uda antenna with pattern reconfigurability , 2018 .

[2]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[3]  W. Rieger,et al.  Yagi-Uda nanoantenna enhanced metal-semiconductor-metal photodetector , 2018, Applied Physics Letters.

[4]  Yi-Cheng Lin,et al.  Dual-Polarized Quasi Yagi–Uda Antennas With Endfire Radiation for Millimeter-Wave MIMO Terminals , 2017, IEEE Transactions on Antennas and Propagation.

[5]  S. Shen,et al.  Resonant Thermal Infrared Emitters in Near- and Far-Fields , 2017 .

[6]  P Lalanne,et al.  Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. , 2013, Physical review letters.

[7]  Yongmin Liu,et al.  Thermal plasmonic interconnects in graphene , 2014 .

[8]  S. Shen,et al.  Graphene surface plasmons mediated thermal radiation , 2018 .

[9]  S. Shen,et al.  Perfect Thermal Emission by Nanoscale Transmission Line Resonators. , 2017, Nano letters.

[10]  Richard W Ziolkowski,et al.  Highly Subwavelength, Superdirective Cylindrical Nanoantenna. , 2018, Physical review letters.

[11]  Constantine A. Balanis,et al.  Antenna theory: a review , 1992, Proc. IEEE.

[12]  A. R. Ellis,et al.  Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials , 2016, Scientific Reports.

[13]  Hao Li,et al.  Beam-Scanning Microstrip Quasi-Yagi–Uda Antenna Based on Hybrid Metal-Graphene Materials , 2018, IEEE Photonics Technology Letters.

[14]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[15]  Joseph M. Kahn,et al.  Fading correlation and its effect on the capacity of multielement antenna systems , 2000, IEEE Trans. Commun..

[16]  Troy Ribaudo,et al.  Highly directional thermal emission from two-dimensional silicon structures. , 2013, Optics express.

[17]  L. Godara Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations , 1997, Proc. IEEE.

[18]  H. Benisty,et al.  Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission , 2015 .

[19]  Y. Kivshar,et al.  Directional and Spectral Shaping of Light Emission with Mie-Resonant Silicon Nanoantenna Arrays , 2018 .

[20]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[21]  M. Agio,et al.  Highly efficient light extraction and directional emission from large refractive-index materials with a planar Yagi-Uda antenna , 2017 .

[22]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[23]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[24]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[25]  Y. Kadoya,et al.  Directional control of light by a nano-optical Yagi–Uda antenna , 2009, 0910.2291.

[26]  Steven G. Johnson,et al.  Fluctuating-surface-current formulation of radiative heat transfer: Theory and applications , 2013, 1304.1215.

[27]  S. Shen,et al.  Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method , 2013 .