Unscented Kalman filter for non-linear estimation of induction machine parameters

In a previous authors' work, a short circuit and start-up tests have been used with the so-called two steps identification method to compute the induction machine's (IM) electrical and mechanical parameters. This latter approach was unable to compute IM parameters with a single dynamic test and could not be applied when IM identification data are noise corrupted. In the present study, the unscented Kalman filter (UKF) is used as non-linear optimal predictor for the saturated electromechanical stochastic dynamic model of IM. In order to overcome the uncertainty on the knowledge of noise-model parameters, the maximum likelihood estimation algorithm is combined to the UKF to compute IM parameters. The technique is successfully applied for the parameters estimation of a 2-kW, 4-pole, 10-A, 60-Hz laboratory induction motor using a start-up test noisy corrupted data. Furthermore, a cross-validation of the estimated model using short-circuit test greatly attests to the effectiveness and validity of the estimated IM model in a wide range of applications.

[1]  O. Touhami,et al.  Faults Diagnosis by Parameter Identification of the Squirrel Cage Induction Machine , 2007, 2007 IEEE International Electric Machines & Drives Conference.

[2]  Ion Boldea,et al.  Complete Parameter Identification of Large Induction Machines From No-Load Acceleration–Deceleration Tests , 2007, IEEE Transactions on Industrial Electronics.

[3]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[4]  R. Jaramillo,et al.  Identification of induction motor parameter using an extended Kalman filter , 2004, (ICEEE). 1st International Conference on Electrical and Electronics Engineering, 2004..

[5]  Michel Poloujadoff,et al.  Modelling and Identification of Parameters of Saturated Induction Machine Operating Under Motor and Generator Conditions , 1999 .

[6]  Sang Woo Kim,et al.  Parameter identification of induction motors using dynamic encoding algorithm for searches (DEAS) , 2005 .

[7]  Rong-Ching Wu,et al.  Parameter Identification of Induction Machine With a Starting No-Load Low-Voltage Test , 2012, IEEE Transactions on Industrial Electronics.

[8]  G. M. Asher,et al.  Parameter sensitivity studies for induction motor parameter identification using extended Kalman filters , 2002 .

[9]  Zhao'an Wang,et al.  Parameter Identification of an Induction Machine at Standstill Using the Vector Constructing Method , 2012, IEEE Transactions on Power Electronics.

[10]  Cursino Brandão Jacobina,et al.  Nonlinear parameter estimation of steady-state induction machine models , 1997, IEEE Trans. Ind. Electron..

[11]  Saadettin Aksoy,et al.  State and parameter estimation in induction motor using the Extended Kalman Filtering algorithm , 2010, 2010 Modern Electric Power Systems.

[12]  Cristian Lascu,et al.  State Estimation of Induction Motor Drives Using the Unscented Kalman Filter , 2012, IEEE Transactions on Industrial Electronics.

[13]  Jie Li,et al.  Speed Estimation of Induction Machines Using Square Root Unscented Kalman Filter , 2005, 2005 IEEE 36th Power Electronics Specialists Conference.

[14]  P. Viarouge,et al.  Two-Step Method for Identification of Nonlinear Model of Induction Machine , 2007, IEEE Transactions on Energy Conversion.

[15]  D. Freitas,et al.  A new online identification methodology for flux and parameters estimation of vector controlled induction motors , 2003, IEEE International Electric Machines and Drives Conference, 2003. IEMDC'03..

[16]  Felix A. Farret,et al.  Renewable Energy Systems: Design and Analysis with Induction Generators , 2004 .

[17]  P. Ledesma,et al.  Doubly fed induction generator model for transient stability analysis , 2005, IEEE Transactions on Energy Conversion.

[18]  Emil Levi General method of magnetising flux saturation modelling in d-q axis models of double-cage induction machines , 1997 .

[19]  Nick Jenkins,et al.  Embedded Generation (Power & Energy Ser. 31) , 2000 .

[21]  J. Pedra,et al.  Estimation of induction motor double-cage model parameters from manufacturer data , 2004, IEEE Transactions on Energy Conversion.

[22]  Innocent Kamwa,et al.  Short-circuit test based maximum likelihood estimation of stability model of large generators , 1999 .

[23]  F. Krim,et al.  Genetic Algorithms based parameters identification of induction machine ARMAX model , 2011, 2011 5th International Power Engineering and Optimization Conference.