Emergent behavior in nanoconfined molecular containers

Summary The expression of biological functions, such as enzyme catalysis, immune response, and cargo transport in confined nanospaces, with very different physical and chemical environments from those in bulk solution, is of crucial importance to living systems. The construction of artificial nanoconfined containers, employing molecular engineering, has become a major focus of many molecular scientists in recent times. These molecular containers—with stereochemically well-defined three-dimensional structures—have proved to be powerful platforms in which to build confined nanospaces. The synthetic flexibility provided by molecular containers gives us the opportunity to tune cavity sizes, geometries, and stereoelectronic landscapes, providing versatile binding pockets tailored to match prescribed properties and functions. With the objective of highlighting the emergent properties of smart materials, housed in confined nanospaces, this review highlights examples of molecular containers with preordained binding pockets and focuses on cavity-enabled functions, such as selective capture, controlled release, and efficient catalysis.

[1]  C. Bertozzi,et al.  Rapid Cu-Free Click Chemistry with Readily Synthesized Biarylazacyclooctynones , 2010, Journal of the American Chemical Society.

[2]  S. Kitagawa,et al.  Modular Design of Porous Soft Materials via Self-Organization of Metal-Organic Cages. , 2018, Accounts of chemical research.

[3]  J. Reek,et al.  Confinement Effects in Catalysis Using Well-Defined Materials and Cages , 2018, Front. Chem..

[4]  Tanya K. Ronson,et al.  Post-assembly Modification of Tetrazine-Edged Fe(II)4L6 Tetrahedra. , 2015, Journal of the American Chemical Society.

[5]  William R. Dichtel,et al.  Seeded growth of single-crystal two-dimensional covalent organic frameworks , 2018, Science.

[6]  Haiming Zhu,et al.  A mutually stabilized host-guest pair , 2019, Science Advances.

[7]  T. Pal,et al.  Porosity Switching in Polymorphic Porous Organic Cages with Exceptional Chemical Stability. , 2019, Angewandte Chemie.

[8]  W. Nau,et al.  Cucurbiturils: from synthesis to high-affinity binding and catalysis. , 2015, Chemical Society reviews.

[9]  Wei Jiang,et al.  Naphthotubes: Macrocyclic Hosts with a Biomimetic Cavity Feature. , 2019, Accounts of chemical research.

[10]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[11]  Charles J. Pedersen,et al.  Cyclic polyethers and their complexes with metal salts , 1967 .

[12]  Tanya K. Ronson,et al.  Signal transduction in a covalent post-assembly modification cascade , 2017 .

[13]  Oren A Scherman,et al.  Cucurbituril-Based Molecular Recognition. , 2015, Chemical reviews.

[14]  J. F. Stoddart,et al.  Mechanical-Bond-Induced Exciplex Fluorescence in an Anthracene-Based Homo[2]Catenane. , 2020, Journal of the American Chemical Society.

[15]  J. Nitschke,et al.  Covalent post-assembly modification in metallosupramolecular chemistry. , 2018, Chemical Society reviews.

[16]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[17]  P. Beer,et al.  The green box: an electronically versatile perylene diimide macrocyclic host for fullerenes. , 2019, Journal of the American Chemical Society.

[18]  Qi Zhang,et al.  Catalysis inside the Hexameric Resorcinarene Capsule. , 2018, Accounts of chemical research.

[19]  Saber Mirzaei,et al.  Tubularenes , 2020, Chemical science.

[20]  R. Jasti,et al.  Emerging applications of carbon nanohoops , 2019, Nature Reviews Chemistry.

[21]  Feihe Huang,et al.  Catalytic reactions within the cavity of coordination cages. , 2019, Chemical Society reviews.

[22]  O. Yaghi,et al.  Sequencing of metals in multivariate metal-organic frameworks , 2020, Science.

[23]  P. J. Lusby,et al.  High Activity and Efficient Turnover by a Simple, Self-Assembled "Artificial Diels-Alderase". , 2018, Journal of the American Chemical Society.

[24]  J. F. Stoddart,et al.  Selective Extraction of C70 by a Tetragonal Prismatic Porphyrin Cage. , 2018, Journal of the American Chemical Society.

[25]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .

[26]  D. Stalke,et al.  Light-triggered guest uptake and release by a photochromic coordination cage. , 2013, Angewandte Chemie.

[27]  A. Cooper,et al.  Porous organic cages: soluble, modular and molecular pores , 2016 .

[28]  Q. Vicens,et al.  Emergences of supramolecular chemistry: from supramolecular chemistry to supramolecular science , 2011 .

[29]  J. F. Stoddart,et al.  XCage: A Tricyclic Octacationic Receptor for Perylene Diimide with Picomolar Affinity in Water. , 2020, Journal of the American Chemical Society.

[30]  Yong Yang,et al.  Pillararenes, a new class of macrocycles for supramolecular chemistry. , 2012, Accounts of chemical research.

[31]  R. Helgeson,et al.  Spherands-ligands whose binding of cations relieves enforced electron-electron repulsions , 1979 .

[32]  H. Pang,et al.  Encapsulating highly catalytically active metal nanoclusters inside porous organic cages , 2018, Nature Catalysis.

[33]  A. Cooper,et al.  The Chemistry of Porous Organic Molecular Materials , 2020, Advanced Functional Materials.

[34]  C. Knobler,et al.  Constrictive and intrinsic binding in a hemicarcerand containing four portals , 1992 .

[35]  Tanya K. Ronson,et al.  Post-assembly Modification of Phosphine Cages Controls Host-Guest Behavior. , 2019, Journal of the American Chemical Society.

[36]  M. Fujita,et al.  Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. , 2009, Angewandte Chemie.

[37]  L. Gan Molecular Containers Derived from [60]Fullerene through Peroxide Chemistry. , 2019, Accounts of chemical research.

[38]  A. Cooper,et al.  Trapping virtual pores by crystal retro-engineering , 2015, Nature Chemistry.

[39]  M. Mastalerz Porous Shape-Persistent Organic Cage Compounds of Different Size, Geometry, and Function. , 2018, Accounts of chemical research.

[40]  P. Stang,et al.  Biomedically Relevant Self-Assembled Metallacycles and Metallacages. , 2019, Journal of the American Chemical Society.

[41]  Jean-Marie Lehn,et al.  Design of organic complexing agents Strategies towards properties , 1973 .

[42]  J. Weng,et al.  Crystalline-Sponge-Based Structural Analysis of Crude Natural Product Extracts. , 2018, Angewandte Chemie.

[43]  William R. Dichtel,et al.  High hopes: can molecular electronics realise its potential? , 2012, Chemical Society reviews.

[44]  J. Szejtli Introduction and General Overview of Cyclodextrin Chemistry. , 1998, Chemical reviews.

[45]  T. Noh,et al.  Recent Advances in Various Metal-Organic Channels for Photochemistry beyond Confined Spaces. , 2016, Accounts of chemical research.

[46]  H. K. Frensdorff,et al.  Macrocyclic polyethers and their complexes. , 1972, Angewandte Chemie.

[47]  H. Amouri,et al.  Confined nanospaces in metallocages: guest molecules, weakly encapsulated anions, and catalyst sequestration. , 2012, Chemical reviews.

[48]  A. J. Blake,et al.  Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage. , 2014, Accounts of chemical research.

[49]  T. Bein,et al.  Covalent Organic Frameworks: Structures, Synthesis, and Applications , 2018, Advanced Functional Materials.

[50]  Chenfeng Ke,et al.  A simple and accessible synthetic lectin for glucose recognition and sensing. , 2012, Nature chemistry.

[51]  K. Houk,et al.  Building on Cram’s Legacy: Stimulated Gating in Hemicarcerands , 2014, Accounts of chemical research.

[52]  Yusuke Tomabechi,et al.  Conformationally supple glucose monomers enable synthesis of the smallest cyclodextrins , 2019, Science.

[53]  J. F. Stoddart,et al.  Mechanically Interlocked Molecules Assembled by π–π Recognition , 2012 .

[54]  F. Würthner,et al.  A Water-Soluble Perylene Bisimide Cyclophane as a Molecular Probe for the Recognition of Aromatic Alkaloids. , 2019, Angewandte Chemie.

[55]  P. J. Lusby,et al.  Rationalizing the Activity of an "Artificial Diels-Alderase": Establishing Efficient and Accurate Protocols for Calculating Supramolecular Catalysis. , 2019, Journal of the American Chemical Society.

[56]  J. F. Stoddart,et al.  Great expectations: can artificial molecular machines deliver on their promise? , 2012, Chemical Society reviews.

[57]  C. Knobler,et al.  Host-guest complexation. 58. Guest release and capture by hemicarcerands introduces the phenomenon of constrictive binding , 1991 .

[58]  Hong‐Cai Zhou,et al.  Ultra-Small Face-Centered-Cubic Ru Nanoparticles Confined within a Porous Coordination Cage for Dehydrogenation , 2018 .

[59]  J. F. Stoddart,et al.  A Dynamic Tetracationic Macrocycle Exhibiting Photoswitchable Molecular Encapsulation. , 2018, Journal of the American Chemical Society.

[60]  Yoshiaki Nakamoto,et al.  para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. , 2008, Journal of the American Chemical Society.

[61]  David M. Kaphan,et al.  A supramolecular microenvironment strategy for transition metal catalysis , 2015, Science.

[62]  Wei Zhao,et al.  Chloride capture using a C–H hydrogen-bonding cage , 2019, Science.

[63]  M. Fujita,et al.  Minimal nucleotide duplex formation in water through enclathration in self-assembled hosts. , 2009, Nature chemistry.

[64]  Hao Li,et al.  An artificial molecular pump. , 2015, Nature nanotechnology.

[65]  T. Kumasaka,et al.  Protein encapsulation within synthetic molecular hosts , 2012, Nature Communications.

[66]  Florian Beuerle,et al.  Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds. , 2018, Angewandte Chemie.

[67]  W. Nau,et al.  The strategic use of supramolecular pK(a) shifts to enhance the bioavailability of drugs. , 2012, Advanced drug delivery reviews.

[68]  P. Mukherjee,et al.  Cage Encapsulated Gold Nanoparticles as Heterogeneous Photocatalyst for Facile and Selective Reduction of Nitroarenes to Azo Compounds. , 2018, Journal of the American Chemical Society.

[69]  B. Gibb,et al.  The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. , 2017, Chemical Society reviews.

[70]  M. Fujita,et al.  Spontaneous assembly of ten components into two interlocked, identical coordination cages , 1999, Nature.

[71]  Moran Feller,et al.  Chemical reactivity under nanoconfinement , 2020, Nature Nanotechnology.

[72]  F. Diederich,et al.  Inclusion Complexes between a Macrocyclic Host Molecule and Aromatic Hydrocarbons in Aqueous Solution , 1983 .

[73]  Yunqian Zhang,et al.  Twisted cucurbit[14]uril. , 2013, Angewandte Chemie.

[74]  J. Rebek,et al.  Molecules in Confined Spaces: Reactivities and Possibilities in Cavitands , 2020, Chem.

[75]  K. Nakabayashi,et al.  Cavity-induced spin-spin interaction between organic radicals within a self-assembled coordination cage. , 2004, Journal of the American Chemical Society.

[76]  Tanya K. Ronson,et al.  Enantiopure [Cs+/Xe⊂Cryptophane]⊂FeII4L4 Hierarchical Superstructures. , 2019, Journal of the American Chemical Society.

[77]  Yanli Zhao,et al.  Pillararene-based self-assembled amphiphiles. , 2018, Chemical Society reviews.

[78]  A. Corma,et al.  Metal-Organic Frameworks as Chemical Nanoreactors: Synthesis and Stabilization of Catalytically Active Metal Species in Confined Spaces. , 2020, Accounts of chemical research.

[79]  David J. Williams,et al.  Cyclobis(paraquat‐p‐phenylene). A Tetracationic Multipurpose Receptor , 1988 .

[80]  Kari Rissanen,et al.  X-ray analysis on the nanogram to microgram scale using porous complexes , 2013, Nature.

[81]  Tanya K. Ronson,et al.  Design Principles for the Optimization of Guest Binding in Aromatic-Paneled FeII4L6 Cages. , 2017, Journal of the American Chemical Society.

[82]  J. C. Barnes,et al.  ExBox: a polycyclic aromatic hydrocarbon scavenger. , 2013, Journal of the American Chemical Society.

[83]  J. F. Stoddart,et al.  Thither supramolecular chemistry? , 2009, Nature chemistry.

[84]  D. Reinhoudt,et al.  Dinuclear metallo-phosphodiesterase models: application of calix[4]arenes as molecular scaffolds , 2000 .

[85]  M. Hirscher,et al.  Barely porous organic cages for hydrogen isotope separation , 2019, Science.

[86]  C. Gaeta,et al.  Prismarenes: A New Class of Macrocyclic Hosts Obtained by Templation in a Thermodynamically Controlled Synthesis , 2020, Journal of the American Chemical Society.

[87]  J. F. Stoddart,et al.  Giant Conductance Enhancement of Intramolecular Circuits through Interchannel Gating , 2020 .

[88]  A. Kaifer,et al.  Cucurbit[8]uril (CB[8])-Based Supramolecular Switches. , 2018, Angewandte Chemie.

[89]  William R. Dichtel,et al.  Covalent Organic Frameworks as a Platform for Multidimensional Polymerization , 2017, ACS central science.

[90]  J. F. Stoddart,et al.  The chemistry of the mechanical bond. , 2009, Chemical Society reviews.

[91]  Stuart J Rowan,et al.  Dynamic covalent chemistry. , 2002, Angewandte Chemie.

[92]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[93]  J. F. Stoddart,et al.  Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules. , 2012, Accounts of chemical research.

[94]  Donald J. Cram The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture)† , 1988 .

[95]  G. Sheldrick,et al.  V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Severin T. Schneebeli,et al.  Functionalizing pillar[n]arenes. , 2014, Accounts of chemical research.

[97]  A. P. Davis,et al.  A biomimetic receptor for glucose , 2018, Nature Chemistry.

[98]  B. Gibb,et al.  High-definition self-assemblies driven by the hydrophobic effect: synthesis and properties of a supramolecular nanocapsule. , 2008, Chemical communications.

[99]  B. Paulus,et al.  Naphthocage: A Flexible yet Extremely Strong Binder for Singly Charged Organic Cations. , 2019, Journal of the American Chemical Society.

[100]  M. Fujita,et al.  Cavity-directed synthesis within a self-assembled coordination cage: highly selective [2 + 2] cross-photodimerization of olefins. , 2003, Journal of the American Chemical Society.

[101]  K. Ariga,et al.  Materials self-assembly and fabrication in confined spaces , 2012 .

[102]  Nicholas P. Power,et al.  Metallo-supramolecular capsules , 2008 .

[103]  O. Terasaki,et al.  Weaving of organic threads into a crystalline covalent organic framework , 2016, Science.

[104]  K. Raymond,et al.  Self-Assembled Tetrahedral Hosts as Supramolecular Catalysts. , 2018, Accounts of chemical research.

[105]  Young Hwan Kim,et al.  Shell closure of two cavitands forms carcerand complexes with components of the medium as permanent guests , 1985 .

[106]  J. Stoddart A century of cyclodextrins , 1989 .

[107]  J. F. Stoddart,et al.  Concepts in the design and engineering of single-molecule electronic devices , 2019, Nature Reviews Physics.

[108]  J. F. Stoddart,et al.  ExTzBox: A Glowing Cyclophane for Live-Cell Imaging. , 2018, Journal of the American Chemical Society.

[109]  J. C. Barnes,et al.  Induced-fit catalysis of corannulene bowl-to-bowl inversion. , 2014, Nature chemistry.

[110]  M. Fujita,et al.  Networked molecular cages as crystalline sponges for fullerenes and other guests. , 2010, Nature chemistry.

[111]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[112]  Ronald A. Smaldone,et al.  Supramolecular design in 2D covalent organic frameworks. , 2020, Chemical Society reviews.

[113]  J. F. Stoddart,et al.  Interwoven supramolecular arrays via the noncovalent polymerization of pseudorotaxanes , 1999 .

[114]  O. Farha,et al.  Metal-Organic Frameworks against Toxic Chemicals. , 2020, Chemical reviews.

[115]  D. Cram,et al.  Carcerand interiors provide a new phase of matter , 1989 .

[116]  A. Kaifer,et al.  Electrochemistry of encapsulated redox centers , 2000 .

[117]  Severin T. Schneebeli,et al.  Cooperative Reactivity in an Extended-Viologen-Based Cyclophane. , 2016, Journal of the American Chemical Society.

[118]  M. Fujita,et al.  Self-assembly of ten molecules into nanometre-sized organic host frameworks , 1995, Nature.

[119]  Guangming Li,et al.  Selective binding and removal of guests in a microporous metal–organic framework , 1995, Nature.

[120]  A. Kuzume,et al.  Exact mass analysis of sulfur clusters upon encapsulation by a polyaromatic capsular matrix , 2017, Nature Communications.

[121]  Nan Song,et al.  Molecular-Scale Porous Materials Based on Pillar[n]arenes , 2018, Chem.

[122]  J. Rebek,et al.  The 55 % Solution: A Formula for Molecular Recognition in the Liquid State , 1998 .

[123]  Liang Feng,et al.  Hierarchy in Metal–Organic Frameworks , 2020, ACS central science.

[124]  M. Yoshizawa,et al.  Recognition and Stabilization of Unsaturated Fatty Acids by a Polyaromatic Receptor. , 2020, Angewandte Chemie.

[125]  Gang Zhang,et al.  Organic cage compounds--from shape-persistency to function. , 2014, Chemical Society reviews.

[126]  M. Fujita,et al.  Template synthesis of precisely monodisperse silica nanoparticles within self-assembled organometallic spheres. , 2010, Nature chemistry.

[127]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[128]  S. Hayashi,et al.  A polyaromatic nanocapsule as a sucrose receptor in water , 2017, Science Advances.

[129]  L. Echegoyen,et al.  Fullerenes as Nanocontainers That Stabilize Unique Actinide Species Inside: Structures, Formation, and Reactivity. , 2019, Accounts of chemical research.

[130]  J. C. Barnes,et al.  Semiconducting single crystals comprising segregated arrays of complexes of C60. , 2015, Journal of the American Chemical Society.

[131]  Jiarui Wu,et al.  Geminiarene: Molecular Scale Dual Selectivity for Chlorobenzene and Chlorocyclohexane Fractionation. , 2019, Journal of the American Chemical Society.

[132]  Bradley D. Smith,et al.  Synthetic mimics of biotin/(strept)avidin. , 2017, Chemical Society reviews.

[133]  J. F. Stoddart,et al.  Suit[4]ane. , 2020, Journal of the American Chemical Society.

[134]  Tanya K. Ronson,et al.  An antiaromatic-walled nanospace , 2019, Nature.

[135]  Yu Liu,et al.  Calixarene-based supramolecular polymerization in solution. , 2012, Chemical Society reviews.

[136]  A. P. Davis,et al.  Biomimetic carbohydrate recognition. , 2020, Chemical Society reviews.

[137]  I. Wheeldon,et al.  Engineering enzyme microenvironments for enhanced biocatalysis. , 2018, Chemical Society reviews.

[138]  Iris M. Oppel,et al.  A permanent mesoporous organic cage with an exceptionally high surface area. , 2014, Angewandte Chemie.

[139]  Hua He,et al.  Review: Metal-organic framework based crystalline sponge method for structure analysis , 2018 .

[140]  J. F. Stoddart,et al.  TetrazineBox: A Structurally Transformative ToolBox. , 2020, Journal of the American Chemical Society.

[141]  J. Rebek,et al.  Entropically driven binding in a self-assembling molecular capsule , 1996, Nature.

[142]  Jordan N. Nelson,et al.  Molecular Russian dolls , 2018, Nature Communications.

[143]  J. Rebek,et al.  Acceleration of a Diels–Alder reaction by a self-assembled molecular capsule , 1997, Nature.

[144]  Martin Saunders,et al.  Noble Gas Atoms Inside Fullerenes , 1996, Science.

[145]  T. Higashi,et al.  Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules. , 2018, Chemical & pharmaceutical bulletin.

[146]  J. Fraser Stoddart,et al.  SYNTHETIC SUPRAMOLECULAR CHEMISTRY , 1997 .

[147]  Jordan N. Nelson,et al.  Stabilizing the Naphthalenediimide Radical within a Tetracationic Cyclophane. , 2019, Journal of the American Chemical Society.

[148]  David J. Williams,et al.  Isostructural, Alternately‐Charged Receptor Stacks. The Inclusion Complexes of Hydroquinone and Catechol Dimethyl Ethers with Cyclobis(paraquat‐p‐phenylene) , 1988 .

[149]  J. S. Rogers,et al.  Calixarenes: paradoxes and paradigms in molecular baskets , 1990 .

[150]  Young Hwan Kim,et al.  Host-guest complexation. 47. Carcerands and carcaplexes, the first closed molecular container compounds , 1988 .

[151]  W. Zhou,et al.  Microporous Metal-Organic Framework Materials for Gas Separation , 2020 .

[152]  M. Fujita,et al.  A Double-Walled Knotted Cage for Guest-Adaptive Molecular Recognition. , 2020, Journal of the American Chemical Society.

[153]  B. Gibb,et al.  Water-soluble, self-assembling container molecules: an update. , 2011, Chemical Society reviews.

[154]  Bradley D. Smith Synthetic receptors for biomolecules : design principles and applications , 2015 .

[155]  J. F. Stoddart,et al.  Ground-state thermodynamics of bistable redox-active donor-acceptor mechanically interlocked molecules. , 2012, Accounts of chemical research.

[156]  J. Fraser Stoddart,et al.  Cyclodextrin-Based Catenanes and Rotaxanes. , 1998, Chemical reviews.

[157]  Abbie Trewin,et al.  Porous organic molecules , 2010, Nature Chemistry.

[158]  Jie Su,et al.  Single-crystal x-ray diffraction structures of covalent organic frameworks , 2018, Science.

[159]  D. Cram Preorganization—From Solvents to Spherands , 1986 .

[160]  C. J. Oss Hydrophobic, hydrophilic and other interactions in epitope-paratope binding. , 1995 .

[161]  D. Reinhoudt,et al.  Calixarenes, chemical chameleons , 1993 .

[162]  M. Fujita,et al.  Coordination assemblies from a Pd(II)-cornered square complex. , 2005, Accounts of chemical research.

[163]  Jennifer A. Prescher,et al.  A comparative study of bioorthogonal reactions with azides. , 2006, ACS chemical biology.

[164]  Diego A. Gómez-Gualdrón,et al.  Balancing volumetric and gravimetric uptake in highly porous materials for clean energy , 2020, Science.

[165]  Nicolaas A. Vermeulen,et al.  Ex(2)Box: interdependent modes of binding in a two-nanometer-long synthetic receptor. , 2013, Journal of the American Chemical Society.

[166]  R. Clowes,et al.  Reticular synthesis of porous molecular 1D nanotubes and 3D networks. , 2017, Nature chemistry.

[167]  Jonathan L. Sessler,et al.  A 'Texas-sized' molecular box that forms an anion-induced supramolecular necklace. , 2010, Nature chemistry.

[168]  F. Diederich,et al.  Complexation of Neutral Molecules by Cyclophane Hosts , 1988 .

[169]  C. Gutsche,et al.  Calixarenes. 13. The conformational properties of calix[4]arenes, calix[6]arenes, calix[8]arenes, and oxacalixarenes , 1985 .

[170]  F. Diederich,et al.  Spherical host molecules for the complexation of aromatic hydrocarbons in aqueous solution , 1984 .

[171]  R. Warmuth,et al.  Recent highlights in hemicarcerand chemistry. , 2001, Accounts of chemical research.

[172]  J. F. Stoddart,et al.  Docking in Metal-Organic Frameworks , 2009, Science.

[173]  J. Nitschke,et al.  Sequence-selective encapsulation and protection of long peptides by a self-assembled FeII8L6 cubic cage , 2017, Nature Communications.

[174]  Q. Guo,et al.  Toward the synthesis of a highly strained hydrocarbon belt. , 2020, Journal of the American Chemical Society.

[175]  M. Yoshizawa,et al.  A polyaromatic receptor with high androgen affinity , 2019, Science Advances.

[176]  C. Gaeta,et al.  The Hexameric Resorcinarene Capsule at Work: Supramolecular Catalysis in Confined Spaces. , 2019, Chemistry.

[177]  Chuyang Cheng,et al.  Wholly Synthetic Molecular Machines. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[178]  C. Gutsche,et al.  Isolation, Characterization, and Conformational Characteristics of p-tert-Butylcalix[9−20]arenes1 , 1999 .

[179]  P. Ballester,et al.  Stabilization of reactive species by supramolecular encapsulation. , 2016, Chemical Society reviews.

[180]  Jean‐Didier Maréchal,et al.  Microsolvation and Encapsulation Effects on Supramolecular Catalysis: C-C Reductive Elimination inside [Ga4L6]12- Metallocage. , 2019, Journal of the American Chemical Society.

[181]  D. Cram,et al.  Container Molecules And Their Guests , 1994 .

[182]  J. Hupp,et al.  Metal-organic framework (MOF) materials as polymerization catalysts: a review and recent advances. , 2020, Chemical communications.

[183]  Evelyn N. Wang,et al.  Water harvesting from air with metal-organic frameworks powered by natural sunlight , 2017, Science.

[184]  Wei Zhou,et al.  Porous metal–organic frameworks for fuel storage , 2017, Coordination Chemistry Reviews.

[185]  F. Diederich,et al.  Complexation of arenes by macrocyclic hosts in aqueous and organic solutions. , 1986, Journal of the American Chemical Society.

[186]  Jong Seung Kim,et al.  Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. , 2019, Chemical reviews.

[187]  M. Fujita,et al.  Room-temperature and solution-state observation of the mixed-valence cation radical dimer of tetrathiafulvalene, [(TTF)2]+*, within a self-assembled cage. , 2005, Journal of the American Chemical Society.

[188]  Ryan M. Young,et al.  Cyclophane-Sustained Ultrastable Porphyrins. , 2020, Journal of the American Chemical Society.

[189]  Yoshiaki Nakamoto,et al.  Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry. , 2016, Chemical reviews.

[190]  F. Vögtle,et al.  Molecules with Large Cavities in Supramolecular Chemistry , 1992 .

[191]  Joseph P Noel,et al.  A Red Algal Bourbonane Sesquiterpene Synthase Defined by Microgram-Scale NMR-Coupled Crystalline Sponge X-ray Diffraction Analysis. , 2017, Journal of the American Chemical Society.

[192]  A. Slawin,et al.  Porous organic cages. , 2009, Nature materials.

[193]  F. Diederich,et al.  Molecular recognition in chemical and biological systems. , 2015, Angewandte Chemie.

[194]  A. Stefankiewicz,et al.  Coordination cages as permanently porous ionic liquids , 2020, Nature Chemistry.

[195]  Timothy R Cook,et al.  Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. , 2015, Chemical reviews.

[196]  H. Zuilhof,et al.  Tiara[5]arenes: Synthesis, Solid‐State Conformational Studies, Host–Guest Properties, and Application as Nonporous Adaptive Crystals , 2019, Angewandte Chemie.

[197]  J. F. Stoddart,et al.  Mechanically bonded macromolecules. , 2010, Chemical Society reviews.

[198]  C. Knobler,et al.  Hemicarcerands permit entrance to and egress from their inside phases with high structural recognition and activation free energies , 1990 .

[199]  Young Ho Ko,et al.  Functionalized cucurbiturils and their applications. , 2007, Chemical Society reviews.

[200]  Nicolaas A. Vermeulen,et al.  Supramolecular Explorations: Exhibiting the Extent of Extended Cationic Cyclophanes. , 2016, Accounts of chemical research.

[201]  Rebecca L. Greenaway,et al.  Liquids with permanent porosity , 2015, Nature.

[202]  K. Raymond,et al.  Advances in supramolecular host-mediated reactivity , 2020, Nature Catalysis.

[203]  A. Keating,et al.  Gating as a Control Element in Constrictive Binding and Guest Release by Hemicarcerands , 1996, Science.

[204]  J. F. Stoddart,et al.  A precise polyrotaxane synthesizer , 2020, Science.

[205]  S. James,et al.  Porous Liquids , 2019, Functional Organic Liquids.

[206]  Yu Liu,et al.  Cyclodextrin‐Based Multistimuli‐Responsive Supramolecular Assemblies and Their Biological Functions , 2019, Advanced materials.

[207]  L. Isaacs Cucurbit[n]urils: from mechanism to structure and function. , 2009, Chemical communications.

[208]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[209]  I. Lázaro,et al.  Image-Guided Therapy Using Maghemite-MOF Nanovectors , 2017 .

[210]  A. Cooper,et al.  Acid- and base-stable porous organic cages: shape persistence and pH stability via post-synthetic "tying" of a flexible amine cage. , 2014, Journal of the American Chemical Society.

[211]  J. Reek,et al.  Transition metal catalysis in confined spaces. , 2015, Chemical Society reviews.

[212]  Kaiya Wang,et al.  Supramolecular Strategies for Controlling Reactivity within Confined Nanospace. , 2020, Angewandte Chemie.

[213]  R. Dubey,et al.  X-ray Structure Analysis of Ozonides by the Crystalline Sponge Method. , 2016, Journal of the American Chemical Society.

[214]  Tanya K. Ronson,et al.  Tuning the Redox Properties of Fullerene Clusters within a Metal-Organic Capsule. , 2017, Journal of the American Chemical Society.

[215]  T. Akita,et al.  Toward Homogenization of Heterogeneous Metal Nanoparticle Catalysts with Enhanced Catalytic Performance: Soluble Porous Organic Cage as a Stabilizer and Homogenizer. , 2015, Journal of the American Chemical Society.

[216]  O. Yaghi,et al.  The atom, the molecule, and the covalent organic framework , 2017, Science.

[217]  A. Jacobson,et al.  Cyclotetrabenzoin: Facile Synthesis of a Shape-Persistent Molecular Square and Its Assembly into Hydrogen-Bonded Nanotubes. , 2015, Chemistry.

[218]  M. Fujita,et al.  Enhanced reactivity of twisted amides inside a molecular cage , 2020, Nature Chemistry.

[219]  Ying Han,et al.  Pagoda[4]arene and i-Pagoda[4]arene. , 2020, Journal of the American Chemical Society.

[220]  Charles J. Pedersen,et al.  The Discovery of Crown Ethers (Noble Lecture) , 1988 .

[221]  D. A. Dougherty,et al.  The Cationminus signpi Interaction. , 1997, Chemical reviews.

[222]  Philip Taynton,et al.  Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers. , 2014, Accounts of chemical research.

[223]  Ashlee J Howarth,et al.  Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. , 2017, Chemical Society reviews.

[224]  D. Reinhoudt,et al.  An enantiomerically pure hydrogen-bonded assembly , 2000, Nature.

[225]  D. Cram,et al.  The Taming of Cyclobutadiene , 1991 .

[226]  Atsushi Ikeda,et al.  Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. , 1997, Chemical reviews.

[227]  Ronald A. Smaldone,et al.  Metal-organic frameworks from edible natural products. , 2010, Angewandte Chemie.

[228]  A. Lombardi,et al.  Peptide-based heme-protein models. , 2001, Chemical reviews.

[229]  M. Yoshizawa,et al.  Bent Anthracene Dimers as Versatile Building Blocks for Supramolecular Capsules. , 2019, Accounts of chemical research.

[230]  M. Kurihara,et al.  Ferrihydrite Particle Encapsulated within a Molecular Organic Cage. , 2018, Journal of the American Chemical Society.

[231]  M. Fujita,et al.  Crystalline molecular flasks. , 2011, Nature chemistry.

[232]  B. List,et al.  Confinement as a Unifying Element in Selective Catalysis , 2020, Chem.

[233]  B. Gibb,et al.  Molecular containers assembled through the hydrophobic effect. , 2015, Chemical Society reviews.

[234]  K. Raymond,et al.  Supramolecular catalysis in metal-ligand cluster hosts. , 2015, Chemical reviews.

[235]  M. Fujita,et al.  Discrete stacking of large aromatic molecules within organic-pillared coordination cages. , 2005, Angewandte Chemie.

[236]  J. F. Stoddart,et al.  Ring-in-Ring(s) Complexes Exhibiting Tunable Multicolor Photoluminescence. , 2020, Journal of the American Chemical Society.

[237]  J. Atwood,et al.  Structural classification and general principles for the design of spherical molecular hosts. , 1999, Angewandte Chemie.

[238]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[239]  J. F. Stoddart,et al.  Dynamic imine chemistry. , 2012, Chemical Society reviews.

[240]  T. He,et al.  Covalent Organic Frameworks: Design, Synthesis, and Functions. , 2020, Chemical reviews.

[241]  J. Sessler,et al.  The "Texas-sized" molecular box: a versatile building block for the construction of anion-directed mechanically interlocked structures. , 2012, Accounts of chemical research.

[242]  Tanya K. Ronson,et al.  Design and Applications of Water-Soluble Coordination Cages , 2020, Chemical reviews.

[243]  J. Hupp,et al.  Charge Transport in Zirconium-Based Metal-Organic Frameworks. , 2020, Accounts of chemical research.

[244]  J. F. Stoddart,et al.  Dynamic hemicarcerands and hemicarceplexes. , 2000, Organic letters.

[245]  Siva Krishna Mohan Nalluri,et al.  Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. , 2017, Chemical Society reviews.

[246]  Songping D. Huang,et al.  Self-assembly of nanoscopic coordination cages of D3h symmetry , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[247]  Akira Harada,et al.  Cyclodextrin-based supramolecular polymers. , 2009, Chemical Society reviews.

[248]  P. Beer,et al.  Calixarene-based Anion Receptors , 2005 .