High Energy Density Aqueous Flow Battery Utilizing Extremely Stable, Branching-Induced High-Solubility Anthraquinone near Neutral pH

[1]  J. Fontmorin,et al.  A new hydroxyanthraquinone derivative with a low and reversible capacity fading process as negolyte in alkaline aqueous redox flow batteries , 2022, Journal of Power Sources.

[2]  C. Grey,et al.  In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries , 2022, Nature Chemistry.

[3]  Fengming Chu,et al.  A Low‐Potential and Stable Bis‐Dimethylamino Substituted Anthraquinone for pH‐Neutral Aqueous Redox Flow Batteries , 2022, ChemElectroChem.

[4]  Zhengjin Yang,et al.  Designing Robust Two-Electron Storage Extended Bipyridinium Anolytes for pH-Neutral Aqueous Organic Redox Flow Batteries , 2022, JACS Au.

[5]  Zhijiang Tang,et al.  Anthraquinone Flow Battery Reactants with Nonhydrolyzable Water-Solubilizing Chains Introduced via a Generic Cross-Coupling Method , 2021, ACS Energy Letters.

[6]  R. Gordon,et al.  Highly Stable Low Redox Potential Quinone for Aqueous Flow Batteries , 2021, Batteries & Supercaps.

[7]  T. L. Liu,et al.  A Self-Trapping, Bipolar Viologen Bromide Electrolyte for Redox Flow Batteries , 2021, ACS Energy Letters.

[8]  Yu Zhao,et al.  Anthraquinone-based anode material for aqueous redox flow batteries operating in nondemanding atmosphere , 2021, Journal of Power Sources.

[9]  Yunlong Ji,et al.  Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures , 2021 .

[10]  M. Perry,et al.  Cost and price projections of synthetic active materials for redox flow batteries , 2021, Journal of Power Sources.

[11]  Yuyan Shao,et al.  Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries , 2021, Science.

[12]  R. Gordon,et al.  Functioning water-insoluble ferrocenes for aqueous organic flow battery via host-guest inclusion. , 2020, ChemSusChem.

[13]  B. Liu,et al.  An aqueous organic redox flow battery employing a trifunctional electroactive compound as anolyte, catholyte and supporting electrolyte , 2020 .

[14]  Yunlong Ji,et al.  Biomimetic Amino Acid Functionalized Phenazine Flow Batteries with Long Lifetime at Near-Neutral pH. , 2020, Angewandte Chemie.

[15]  Zhengjin Yang,et al.  Designer Ferrocene Catholyte for Aqueous Organic Flow Batteries. , 2020, ChemSusChem.

[16]  Zhiling Zhao,et al.  Investigations Into Aqueous Redox Flow Batteries Based on Ferrocene Bisulfonate , 2020 .

[17]  E. Ventosa,et al.  Revisiting the cycling stability of ferrocyanide in alkaline media for redox flow batteries , 2020, Journal of Power Sources.

[18]  Qing Wang,et al.  A robust anionic sulfonated ferrocene derivative for pH-neutral aqueous flow battery , 2020 .

[19]  R. Gordon,et al.  Extremely Stable Anthraquinone Negolytes Synthesized from Common Precursors , 2020, Chem.

[20]  Yukari Sato,et al.  Redox-Flow Battery Operating in Neutral and Acidic Environments with Multielectron-Transfer-Type Viologen Molecular Assembly , 2020 .

[21]  R. Gordon,et al.  Near Neutral pH Redox Flow Battery with Low Permeability and Long‐Lifetime Phosphonated Viologen Active Species , 2020, Advanced Energy Materials.

[22]  Zhengjin Yang,et al.  Screening viologen derivatives for neutral aqueous organic redox flow battery. , 2020, ChemSusChem.

[23]  Fikile R. Brushett,et al.  On Lifetime and Cost of Redox-Active Organics for Aqueous Flow Batteries , 2020 .

[24]  David G. Kwabi,et al.  Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review. , 2020, Chemical reviews.

[25]  Yu Zhu,et al.  Stable Low-Cost Organic Dye Anolyte for Aqueous Organic Redox Flow Battery , 2020 .

[26]  Guigen Li,et al.  Molecular Design of Fused-Ring Phenazine Derivatives for Long-Cycling Alkaline Redox Flow Batteries , 2020 .

[27]  T. L. Liu,et al.  A pH Neutral, Metal Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte. , 2019, Angewandte Chemie.

[28]  T. L. Liu,et al.  Status and Prospects of Organic Redox Flow Batteries toward Sustainable Energy Storage , 2019, ACS Energy Letters.

[29]  Liang Wu,et al.  A Long-Lifetime All-Organic Aqueous Flow Battery Utilizing TMAP-TEMPO Radical , 2019, Chem.

[30]  David G. Kwabi,et al.  A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density , 2019, ACS Energy Letters.

[31]  Jaephil Cho,et al.  A High Voltage Aqueous Zinc–Organic Hybrid Flow Battery , 2019, Advanced Energy Materials.

[32]  Hua Wang,et al.  Renewable-lawsone-based sustainable and high-voltage aqueous flow battery , 2019, Energy Storage Materials.

[33]  Eugene E. Kwan,et al.  Extending the Lifetime of Organic Flow Batteries via Redox State Management. , 2019, Journal of the American Chemical Society.

[34]  Zhengjin Yang,et al.  110th Anniversary: Unleashing the Full Potential of Quinones for High Performance Aqueous Organic Flow Battery , 2019, Industrial & Engineering Chemistry Research.

[35]  Daniel P. Tabor,et al.  Molecular Engineering of an Alkaline Naphthoquinone Flow Battery , 2019, ACS Energy Letters.

[36]  David G. Kwabi,et al.  A Phosphonate‐Functionalized Quinone Redox Flow Battery at Near‐Neutral pH with Record Capacity Retention Rate , 2019, Advanced Energy Materials.

[37]  Yiyang Liu,et al.  A Sustainable Redox Flow Battery with Alizarin-Based Aqueous Organic Electrolyte , 2019, ACS Applied Energy Materials.

[38]  T. L. Liu,et al.  Unprecedented Capacity and Stability of Ammonium Ferrocyanide Catholyte in pH Neutral Aqueous Redox Flow Batteries , 2019, Joule.

[39]  Guigen Li,et al.  High-Performance Alkaline Organic Redox Flow Batteries Based on 2-Hydroxy-3-carboxy-1,4-naphthoquinone , 2018, ACS Energy Letters.

[40]  Rajeev S. Assary,et al.  Spatially Constrained Organic Diquat Anolyte for Stable Aqueous Flow Batteries , 2018, ACS Energy Letters.

[41]  David G. Kwabi,et al.  Alkaline Quinone Flow Battery with Long Lifetime at pH 12 , 2018, Joule.

[42]  David M. Reed,et al.  A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries , 2018, Nature Energy.

[43]  Juan Xu,et al.  A highly reversible anthraquinone-based anolyte for alkaline aqueous redox flow batteries , 2018 .

[44]  Alán Aspuru-Guzik,et al.  Alkaline Benzoquinone Aqueous Flow Battery for Large‐Scale Storage of Electrical Energy , 2018 .

[45]  T. Liu,et al.  A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries. , 2018, Angewandte Chemie.

[46]  T. L. Liu,et al.  Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries , 2017 .

[47]  David M. Reed,et al.  Materials and Systems for Organic Redox Flow Batteries: Status and Challenges , 2017 .

[48]  Manuel Baumann,et al.  CO2 Footprint and Life‐Cycle Costs of Electrochemical Energy Storage for Stationary Grid Applications , 2017 .

[49]  R. Gordon,et al.  A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention , 2017 .

[50]  U. Schubert,et al.  Aqueous 2,2,6,6-Tetramethylpiperidine-N-oxyl Catholytes for a High-Capacity and High Current Density Oxygen-Insensitive Hybrid-Flow Battery , 2017 .

[51]  T. L. Liu,et al.  Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. , 2017, Journal of the American Chemical Society.

[52]  Ulrich S. Schubert,et al.  Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials , 2016, Angewandte Chemie.

[53]  U. Schubert,et al.  An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System. , 2016, Angewandte Chemie.

[54]  U. Schubert,et al.  TEMPO/Phenazine Combi-Molecule: A Redox-Active Material for Symmetric Aqueous Redox-Flow Batteries , 2016 .

[55]  Michael G. Verde,et al.  A biomimetic redox flow battery based on flavin mononucleotide , 2016, Nature Communications.

[56]  Alán Aspuru-Guzik,et al.  A redox-flow battery with an alloxazine-based organic electrolyte , 2016, Nature Energy.

[57]  Michael P. Marshak,et al.  Anthraquinone Derivatives in Aqueous Flow Batteries , 2016 .

[58]  Martin D Hager,et al.  Poly(TEMPO)/Zinc Hybrid‐Flow Battery: A Novel, “Green,” High Voltage, and Safe Energy Storage System , 2016, Advanced materials.

[59]  Shu Zhang,et al.  An Organic Electroactive Material for Flow Batteries , 2016 .

[60]  Wei Wang,et al.  A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4‐HO‐TEMPO Catholyte , 2016 .

[61]  Roy G. Gordon,et al.  Alkaline quinone flow battery , 2015, Science.

[62]  G. Soloveichik Flow Batteries: Current Status and Trends. , 2015, Chemical reviews.

[63]  Jens Noack,et al.  The Chemistry of Redox-Flow Batteries. , 2015, Angewandte Chemie.

[64]  A. Gavezzotti,et al.  Are racemic crystals favored over homochiral crystals by higher stability or by kinetics? Insights from comparative studies of crystalline stereoisomers. , 2014, The Journal of organic chemistry.

[65]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[66]  Michael J. Aziz,et al.  Electricity storage for intermittent renewable sources , 2012 .

[67]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[68]  G. Graff,et al.  A Stable Vanadium Redox‐Flow Battery with High Energy Density for Large‐Scale Energy Storage , 2011 .

[69]  Paul Denholm,et al.  Role of Energy Storage with Renewable Electricity Generation , 2010 .