LMI based stability analysis and controller design for a class of 2D continuous-discrete linear systems

Differential linear repetitive processes are a distinct class of 2D continuous-discrete linear systems of both applications and systems theoretic interest. In the latter area, they arise, for example, in the analysis of both iterative learning control schemes and iterative algorithms for computing the solutions of nonlinear dynamic optimal control algorithms based on the maximum principle. Repetitive processes cannot be analysed/controlled by direct application of existing systems theory and to date there are few results on the specification and design of control schemes for them. The paper uses an LMI setting to develop the first really significant results in this problem domain.