Condition Monitoring of Gas-Turbine Engines

[1]  Bernhard Schölkopf,et al.  Support Vector Method for Novelty Detection , 1999, NIPS.

[2]  Rami Mangoubi,et al.  A model based Vehicle Health Monitoring system for the Space Shuttle Main Engine , 1998 .

[3]  Robert E. Schapire,et al.  The Boosting Approach to Machine Learning An Overview , 2003 .

[4]  David Rees,et al.  Frequency-domain identification of gas turbine dynamics , 1998, IEEE Trans. Control. Syst. Technol..

[5]  Jim Austin,et al.  THE ADVANCED UNCERTAIN REASONING ARCHITECTURE, AURA , 1998 .

[6]  Ke Chen,et al.  Improved learning algorithms for mixture of experts in multiclass classification , 1999, Neural Networks.

[7]  Irem Y. Tumer,et al.  A SURVEY OF AIRCRAFT ENGINE HEALTH MONITORING SYSTEMS , 1999 .

[8]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[9]  Robert T. Clark,et al.  AGETS MBR An Application of Model-Based Reasoning to Gas Turbine Diagnostics , 1995, AI Mag..

[10]  David Rees,et al.  Nonlinear gas turbine modeling using NARMAX structures , 2001, IEEE Trans. Instrum. Meas..

[11]  Chuck Trammel,et al.  UK Ministry of Defence generic health and usage monitoring system (GenHUMS) , 1997 .

[12]  Lionel Tarassenko,et al.  Choosing an appropriate model for novelty detection , 1997 .

[13]  Michael E. Tipping,et al.  Feed-forward neural networks and topographic mappings for exploratory data analysis , 1996, Neural Computing & Applications.

[14]  Kenneth Collinge,et al.  TEXMAS - an expert system for gas turbine engine diagnosis and more , 1987 .

[15]  Graeme L. Merrington Fault Diagnosis in Gas Turbines Using a Model-Based Technique , 1993 .

[16]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[17]  Marios M. Polycarpou,et al.  An On-Line Approximation Approach to Fault Monitoring, Diagnosis and Accommodation , 1994 .

[18]  Donald B. Percival,et al.  AN INTRODUCTION TO SPECTRAL ANALYSIS AND WAVELETS , 1993 .

[19]  Michael Kincheloe,et al.  On-line learning neural-network controllers for autopilot systems , 1995 .

[20]  Samy Bengio,et al.  Online policy adaptation for ensemble classifiers , 2004, ESANN.

[21]  Anders Krogh,et al.  Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.

[22]  Alan Palazzolo,et al.  In Operation Detection and Correction of Rotor Imbalance in Jet Engines Using Active Vibration Control , 1994 .

[23]  Jim Austin,et al.  DAME: Searching Large Data Sets Within a Grid-Enabled Engineering Application , 2005, Proceedings of the IEEE.

[24]  Jim Austin,et al.  Delivering a Grid enabled Distributed Aircraft Maintenance Environment ( DAME ) , 2003 .

[25]  A. P. Dhawan,et al.  SSME parameter estimation using radial basis function neural networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[26]  Wray L. Buntine,et al.  Space Shuttle Main Engine Plume Diagnostics: OPAD Approach to Vehicle Health Monitoring , 1993 .

[27]  Peter D. Turney,et al.  Contextual normalization applied to aircraft gas turbine engine diagnosis , 2004, Applied Intelligence.

[28]  Rolls-Royce,et al.  The Jet engine , 1986 .

[29]  J. R. McDonald,et al.  Model-Based Condition Monitoring of Gas Turbines for Power Generation Duty , 2001 .

[30]  Mohamad T. Musavi,et al.  On the training of radial basis function classifiers , 1992, Neural Networks.

[31]  R. Subbu,et al.  Evolutionary design and optimization of aircraft engine controllers , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[32]  Lionel Tarassenko,et al.  A System for the Analysis of Jet Engine Vibration Data , 1999, Integr. Comput. Aided Eng..

[33]  Brian D. Ripley Complements to 'Pattern Recognition and Neural Networks , 1996 .

[34]  Lionel Tarassenko,et al.  Guide to Neural Computing Applications , 1998 .

[35]  Lionel Tarassenko,et al.  Novelty detection for the identification of abnormalities , 2000, Int. J. Syst. Sci..

[36]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[37]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[38]  L. Tarassenko,et al.  Novelty detection in jet engines , 1999 .

[39]  Yang She-zi An Improved Algorithm for Wavelet Packets and Its Applications to Vibration Diagnosis in Diesel Engines , 2000 .

[40]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[41]  Sieu Phan,et al.  Jet engine technical advisor (JETA) , 1989, IEA/AIE '89.

[42]  Alexander J. Smola,et al.  Online learning with kernels , 2001, IEEE Transactions on Signal Processing.

[43]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[44]  Silvio Simani,et al.  Identification and fault diagnosis of a simulated model of an industrial gas turbine , 2005, IEEE Transactions on Industrial Informatics.

[45]  José M. Peña,et al.  Data mining to detect abnormal behavior in aerospace data , 2000, KDD '00.

[46]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[47]  Ian T. Nabney,et al.  Netlab: Algorithms for Pattern Recognition , 2002 .

[48]  John C. Platt A Resource-Allocating Network for Function Interpolation , 1991, Neural Computation.

[49]  Hujun Yin,et al.  Wavelet Analysis in Novelty Detection for Combustion Image Data , 2007 .

[50]  Robert E. Schapire,et al.  A Brief Introduction to Boosting , 1999, IJCAI.

[51]  D. Opitz,et al.  Popular Ensemble Methods: An Empirical Study , 1999, J. Artif. Intell. Res..

[52]  Ian T. Foster,et al.  Grid Services for Distributed System Integration , 2002, Computer.

[53]  Hans R. Depold,et al.  The Application of Expert Systems and Neural Networks to Gas Turbine Prognostics and Diagnostics , 1998 .

[54]  Robert P. W. Duin,et al.  Sammon's mapping using neural networks: A comparison , 1997, Pattern Recognit. Lett..

[55]  Bernhard Schölkopf,et al.  Support Vector Novelty Detection Applied to Jet Engine Vibration Spectra , 2000, NIPS.

[56]  R. A. Pawlowski,et al.  Gas Turbine Engine Health Monitoring and Prognostics , 1999 .

[57]  Yang Zhang,et al.  Support Vector Machine in Novelty Detection for Multi-channel Combustion Data , 2006, ISNN.

[58]  LiJie Yu,et al.  A novel approach to aircraft engine anomaly detection and diagnostics , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[59]  Tim C. Lieuwen,et al.  Investigation of combustion instability mechanisms in premixed gas turbines , 1999 .

[60]  Gregory Piatetsky-Shapiro,et al.  Advances in Knowledge Discovery and Data Mining , 2004, Lecture Notes in Computer Science.

[61]  Visakan Kadirkamanathan,et al.  Decision support system on the grid , 2005, Int. J. Knowl. Based Intell. Eng. Syst..

[62]  Inderjit Chopra,et al.  Helicopter Rotor System Health Monitoring Using Numerical Simulation and Neural Networks , 1997 .

[63]  L. J. Kangas,et al.  An artificial neural network system for diagnosing gas turbine engine fuel faults , 1994 .

[64]  Moonis Ali,et al.  Pattern-based fault diagnosis using neural networks , 1988, IEA/AIE '88.

[65]  L. Tarassenko,et al.  BIOSIGN/spl trade/ : multi-parameter monitoring for early warning of patient deterioration , 2005 .

[66]  D. Osypiw,et al.  On-Line Vibration Analysis with Fast Continuous Wavelet Algorithm for Condition Monitoring of Bearing , 2003 .

[67]  Xin Yao,et al.  Ensemble learning via negative correlation , 1999, Neural Networks.

[68]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[69]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .