Torsional frequency mixing and sensing in optomechanical resonators

In this letter, a torsional optomechanical resonator for torque sensing and torsional mechanical frequency mixing is experimentally demonstrated. The torsional mechanical resonator is embedded into a split optical racetrack resonator, which provides high sensitivity in measuring torsional mechanical motion. Using this high sensitivity, torsional mechanical frequency mixing is observed without regenerative mechanical motion. The displacement noise floor of the torsional mechanical resonator is 50 fm/Hz0.5, which demonstrates a resonant torque sensitivity of 3.58 × 10−21 N m/Hz0.5. This demonstration will benefit potential applications for on-chip RF signal modulation using optical mechanical resonators.

[1]  B. Hauer,et al.  Approaching the standard quantum limit of mechanical torque sensing , 2016, Nature Communications.

[2]  M. R. Freeman,et al.  Nanoscale torsional optomechanics , 2012, 1210.1852.

[3]  M. Cerdonio,et al.  Room temperature gravitational wave bar detector with optomechanical readout , 2002 .

[4]  E. Sheridan,et al.  Sensitivity and performance of cavity optomechanical field sensors , 2012 .

[5]  J Knittel,et al.  Cavity optomechanical magnetometer. , 2012, Physical review letters.

[6]  J. Teufel,et al.  Nanomechanical motion measured with an imprecision below that at the standard quantum limit. , 2009, Nature nanotechnology.

[7]  Marcelo Wu,et al.  Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry. , 2016, Nature nanotechnology.

[8]  M. Metcalfe Applications of cavity optomechanics , 2014 .

[9]  K. Vahala,et al.  An Optomechanical Oscillator on a Silicon Chip , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  Mark R. Freeman,et al.  Dissipative and Dispersive Optomechanics in a Nanocavity Torque Sensor , 2014, 1403.6486.

[11]  Halina Rubinsztein-Dunlop,et al.  Ultrasensitive Optomechanical Magnetometry , 2014, Advanced materials.

[12]  Q. Lin,et al.  A high-resolution microchip optomechanical accelerometer , 2012, Nature Photonics.

[13]  B. Hauer,et al.  A general procedure for thermomechanical calibration of nano/micro-mechanical resonators , 2013, 1305.0557.

[14]  Vladimir Aksyuk,et al.  Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy. , 2012, Optics express.

[15]  M. Loupias,et al.  Virgo: a laser interferometer to detect gravitational waves , 2012 .

[16]  Tobias J. Kippenberg,et al.  Cavity Optomechanics with Whispering-Gallery Mode Optical Micro-Resonators , 2010, 1003.5922.

[17]  Z. Suo,et al.  Nano-optomechanical actuator and pull-back instability. , 2013, ACS nano.

[18]  K. Vahala,et al.  Photonic RF Down-Converter Based on Optomechanical Oscillation , 2008, IEEE Photonics Technology Letters.

[19]  Luis Moroder,et al.  Single-Molecule Optomechanical Cycle , 2002, Science.

[20]  C. Degen,et al.  Ultrasensitive mechanical detection of magnetic moment using a commercial disk drive write head , 2015, Nature Communications.

[21]  Kerry J. Vahala,et al.  Coherent mixing of mechanical excitations in nano-optomechanical structures , 2009, 0908.1128.

[22]  D. Kwong,et al.  A silicon-nanowire memory driven by optical gradient force induced bistability , 2015 .

[23]  W. Pernice,et al.  Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides. , 2009, Physical review letters.

[24]  Chenguang Huang,et al.  Internal frequency mixing in a single optomechanical resonator , 2012 .

[25]  V. Aksyuk,et al.  Wide Stiffness Range Cavity Optomechanical Sensors for Atomic Force Microscopy , 2012 .

[26]  M. Hossein-Zadeh,et al.  Characterization of Optomechanical RF frequency Mixing/Down-Conversion and its Application in Photonic RF Receivers , 2014, Journal of Lightwave Technology.