Effective Synthesis of Silicon Carbide Nanotubes by Microwave Heating of Blended Silicon Dioxide and Multi-Walled Carbon Nanotube

. Compared to bulk SiC, one-dimensional (1D) semiconductor nanostructured SiC such as SiC nano-rods, nanotubes and nanowires have been studied more extensively during the last decade owing to their versatile application in fabrication of optoelectronic, electronic and sensor devices on nanometer scale

[1]  S. M. Kahar,et al.  Synthesis of silicon carbide nanowhiskers by microwave heating: effect of heating duration , 2017 .

[2]  H. Maciel,et al.  Growth and Characterization of Graphene on Polycrystalline SiC Substrate Using Heating by CO2 Laser Beam , 2016 .

[3]  W. Li,et al.  Molten salt assisted synthesis of 3C–SiC nanowire and its photoluminescence properties , 2015 .

[4]  Zhongyi Zhang,et al.  Synthesis of high crystalline beta SiC nanowires on a large scale without catalyst , 2015 .

[5]  M. Pavese,et al.  Silicon carbide hollow cylinders using carbon nanotubes structures as template , 2015 .

[6]  Kun Zhou,et al.  Recent progress in synthesis, properties and potential applications of SiC nanomaterials , 2015 .

[7]  G. C. Ribeiro,et al.  Properties of SiC Ceramics Sintered via Liquid Phase Using Al2O3 + Y2O3, Al2O3 + Yb2O3 and Al2O3 + Dy2O3 as Additives: a Comparative Study , 2015 .

[8]  N. Al-Hada,et al.  Optimisation of the Photonic Efficiency of TiO2 Decorated on MWCNTs for Methylene Blue Photodegradation , 2015, PloS one.

[9]  Yueping Fang,et al.  Metal-free carbon nanotube–SiC nanowire heterostructures with enhanced photocatalytic H2 evolution under visible light irradiation , 2015 .

[10]  J. Meyer,et al.  Microwave-Plasma Synthesis of Nano-sized Silicon Carbide at Atmospheric Pressure , 2015 .

[11]  M. Bystrzejewski,et al.  Preparation of silicon carbide SiC-based nanopowders by the aerosol-assisted synthesis and the DC thermal plasma synthesis methods , 2015 .

[12]  Guang-Lin Zhao,et al.  Microwave absorption properties of multi-walled carbon nanotube (outer diameter 20–30nm)–epoxy composites from 1 to 26.5GHz , 2015 .

[13]  T. Choi,et al.  Origin of broad band emissions of 3C-silicon carbide nanowire by temperature and time resolved photoluminence study , 2015 .

[14]  P. Markowski,et al.  Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: from mechanistic study to optimal fabrication strategy , 2015, Journal of Nanoparticle Research.

[15]  S. Rahman,et al.  Photoluminescence and structural properties of Si/SiC core-shell nanowires growth by HWCVD , 2015 .

[16]  Chen Zhao-hui,et al.  High-temperature protective coatings for C/SiC composites , 2014 .

[17]  Guang Li,et al.  Growth of SiC nanowires on wooden template surface using molten salt media , 2014 .

[18]  B. Mei,et al.  Silicon carbide/carbon nanotube heterostructures: Controllable synthesis, dielectric properties and microwave absorption , 2014 .

[19]  A. Mohamed,et al.  Visible-light-driven MWCNT@TiO2 core-shell nanocomposites and the roles of MWCNTs on the surface chemistry, optical properties and reactivity in CO2 photoreduction , 2014 .

[20]  C. Deng,et al.  Novel synthesis and characterization of silicon carbide nanowires on graphite flakes , 2014 .

[21]  Yunhui Huang,et al.  Fast microwave-assisted synthesis of Nb-doped Li4Ti5O12 for high-rate lithium-ion batteries , 2014, Journal of Nanoparticle Research.

[22]  Xuguang Liu,et al.  Facile synthesis of interconnected SiC nanowire networks on silicon substrate , 2014 .

[23]  Jaegeun Lee,et al.  Microwave heating of carbon-based solid materials , 2014 .

[24]  E. Goharshadi,et al.  Hydrogen storage on silicon, carbon, and silicon carbide nanotubes: A combined quantum mechanics and grand canonical Monte Carlo simulation study , 2014 .

[25]  A. Mohamed,et al.  Photocatalytic TiO2/Carbon Nanotube Nanocomposites for Environmental Applications: An Overview and Recent Developments , 2014 .

[26]  C. Ferrari,et al.  Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates , 2013 .

[27]  T. Shirai,et al.  Rapid carbothermal synthesis of nanostructured silicon carbide particles and whiskers from rice husk by microwave heating method , 2013 .

[28]  L. Latu-Romain,et al.  Silicon carbide nanotubes growth: an original approach , 2013 .

[29]  Xinli Wang,et al.  Microwave Dielectric Characterization of Silicon Dioxide , 2013 .

[30]  Stephen E. Saddow,et al.  Silicon carbide: a versatile material for biosensor applications , 2013, Biomedical Microdevices.

[31]  N. Ehsani,et al.  Synthesis and characterization of SiC nano powder with low residual carbon processed by sol–gel method , 2012 .

[32]  I. Sajó,et al.  Synthesis of SiC powder by RF plasma technique , 2011 .

[33]  S. Hashimoto,et al.  Mechanism for the formation of SiC by carbothermal reduction reaction using a microwave heating technique , 2011 .

[34]  S. Eroglu,et al.  Chemical vapor deposition of C on SiO2 and subsequent carbothermal reduction for the synthesis of nanocrystalline SiC particles/whiskers , 2011 .

[35]  K. Cheong,et al.  A review on the synthesis of SiC from plant-based biomasses , 2011 .

[36]  D. Chaussende,et al.  From Si nanowire to SiC nanotube , 2011 .

[37]  Lipeng Xin,et al.  A simple catalyst-free route for large-scale synthesis of SiC nanowires , 2011 .

[38]  P. Zhu,et al.  Preparation and characterization of one-dimensional SiC–CNT composite nanotubes ☆ , 2011 .

[39]  Weihua Tang,et al.  Band gap characterization and photoluminescence properties of SiC nanowires , 2011 .

[40]  P. Kumbhakar,et al.  Synthesis and study of photoluminescence characteristics of carbon nanotube/ZnS hybrid nanostructures , 2010 .

[41]  Morteza Oghbaei,et al.  Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications , 2010 .

[42]  J. A. Menéndez,et al.  Microwave heating processes involving carbon materials , 2010 .

[43]  Wenhui Ma,et al.  Synthesis and Photoluminescence Property of Silicon Carbide Nanowires Via Carbothermic Reduction of Silica , 2009, Nanoscale research letters.

[44]  K. Cheong,et al.  Stimulation of silicon carbide nanotubes formation using different ratios of carbon nanotubes to silicon dioxide nanopowders , 2009 .

[45]  Yuan-Yao Li,et al.  SiC nanowires in large quantities: Synthesis, band gap characterization, and photoluminescence properties , 2009 .

[46]  Hejun Li,et al.  Large-scale synthesis and photoluminescence properties of hexagonal-shaped SiC nanowires , 2008 .

[47]  Jiqing Wang,et al.  Synthesis of silicon carbide nanotubes by chemical vapor deposition. , 2007, Journal of nanoscience and nanotechnology.

[48]  K. N. Sood,et al.  Synthesis of silicon carbide nanofibers from pitch blended with sol–gel derived silica , 2006 .

[49]  Lijun Yan,et al.  SiC nanowires: A photocatalytic nanomaterial , 2006 .

[50]  Weikun Ge,et al.  Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye , 2005 .

[51]  R. Mokaya,et al.  High Surface Area Silicon Carbide Whiskers and Nanotubes Nanocast Using Mesoporous Silica , 2004 .

[52]  C. Pham‐Huu,et al.  Synthesis and characterisation of medium surface area silicon carbide nanotubes , 2003 .