A Bézier extraction based XIGA approach for three-dimensional crack simulations

Abstract In this work, Bezier extraction based extended isogeometric analysis (XIGA) has been performed for three-dimensional (3-D) crack simulations in linear elastic materials. The Bezier extraction represent the original NURBS basis functions in terms of Bernstein shape functions defined over C 0 continuous isogeometric Bezier elements, and provides an element wise data structure of NURBS which makes the implementation similar to extended finite element method (XFEM). A crack in the domain is modeled by Heaviside and crack tip enrichment functions. The values of mixed-mode stress intensity factors (SIFs) are obtained by interaction integral approach using virtual cuboidal domain. Various 3-D crack problems are solved by Bezier extraction based XIGA, and the results are compared with XFEM and analytical solutions.

[1]  T. Belytschko,et al.  Vector level sets for description of propagating cracks in finite elements , 2003 .

[2]  P. Kerfriden,et al.  Minimum energy multiple crack propagation. Part I: Theory and state of the art review , 2017 .

[3]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[4]  Indra Vir Singh,et al.  Fatigue crack growth simulations of 3-D problems using XFEM , 2013 .

[5]  Cv Clemens Verhoosel,et al.  An isogeometric analysis Bézier interface element for mechanical and poromechanical fracture problems , 2014 .

[6]  I. Singh,et al.  Three-dimensional quasi-static interfacial crack growth simulations in thermo-mechanical environment by coupled FE-EFG approach , 2016 .

[7]  Vinh Phu Nguyen,et al.  Isogeometric analysis: An overview and computer implementation aspects , 2012, Math. Comput. Simul..

[8]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .

[9]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[10]  M. Duflot A meshless method with enriched weight functions for three‐dimensional crack propagation , 2006 .

[11]  Eleni Chatzi,et al.  Stable 3D XFEM/vector level sets for non‐planar 3D crack propagation and comparison of enrichment schemes , 2018 .

[12]  John A. Evans,et al.  Bézier projection: A unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis , 2014, 1404.7155.

[13]  Majid R. Ayatollahi,et al.  Determination of NSIFs and coefficients of higher order terms for sharp notches using finite element method , 2011 .

[14]  J. L. Curiel-Sosa,et al.  3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks , 2017 .

[15]  Timon Rabczuk,et al.  Dual‐horizon peridynamics , 2015, 1506.05146.

[16]  H. Nguyen-Xuan,et al.  A simple and robust three-dimensional cracking-particle method without enrichment , 2010 .

[17]  A. S. Shedbale,et al.  A coupled FE–EFG approach for modelling crack growth in ductile materials , 2016 .

[18]  S. Ahmad,et al.  Creep crack simulations using continuum damage mechanics and extended finite element method , 2019 .

[19]  B. K. Mishra,et al.  A simple, efficient and accurate Bézier extraction based T-spline XIGA for crack simulations , 2017 .

[20]  Bijay K. Mishra,et al.  Evaluation of mixed mode stress intensity factors for interface cracks using EFGM , 2011 .

[21]  Timon Rabczuk,et al.  Finite strain fracture of 2D problems with injected anisotropic softening elements , 2014 .

[22]  Timon Rabczuk,et al.  Steiner-point free edge cutting of tetrahedral meshes with applications in fracture , 2017 .

[23]  T. Rabczuk,et al.  On three-dimensional modelling of crack growth using partition of unity methods , 2010 .

[24]  D. Mowbray,et al.  A note on the finite element method in linear fracture mechanics , 1970 .

[25]  T. Belytschko,et al.  X‐FEM in isogeometric analysis for linear fracture mechanics , 2011 .

[26]  I. Singh,et al.  HEAT TRANSFER ANALYSIS OF TWO-DIMENSIONAL FINS USING MESHLESS ELEMENT FREE GALERKIN METHOD , 2003 .

[27]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[28]  R. D. Henshell,et al.  CRACK TIP FINITE ELEMENTS ARE UNNECESSARY , 1975 .

[29]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[30]  Denis Anders,et al.  Isogeometric analysis of thermal diffusion in binary blends , 2012 .

[31]  Stéphane Bordas,et al.  Stable 3D extended finite elements with higher order enrichment for accurate non planar fracture , 2016 .

[32]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[33]  René de Borst,et al.  The role of the Bézier extraction operator for T‐splines of arbitrary degree: linear dependencies, partition of unity property, nesting behaviour and local refinement , 2015 .

[34]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[35]  Zhiguo Wang,et al.  3-D elasto-plastic large deformations: IGA simulation by Bézier extraction of NURBS , 2017, Adv. Eng. Softw..

[36]  Ted Belytschko,et al.  A coupled finite element-element-free Galerkin method , 1995 .

[37]  D. Chopp,et al.  Three‐dimensional non‐planar crack growth by a coupled extended finite element and fast marching method , 2008 .

[38]  Himanshu Pathak Three-dimensional quasi-static fatigue crack growth analysis in functionally graded materials (FGMs) using coupled FE-XEFG approach , 2017 .

[39]  Bijay K. Mishra,et al.  Numerical simulation of thermo-elastic fracture problems using element free Galerkin method , 2010 .

[40]  I. Singh,et al.  Three-dimensional stochastic quasi-static fatigue crack growth simulations using coupled FE-EFG approach , 2015 .

[41]  I. Singh,et al.  A two-scale stochastic framework for predicting failure strength probability of heterogeneous materials , 2017 .

[42]  T. Q. Bui Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS , 2015 .

[43]  Pierre Kerfriden,et al.  Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications , 2017 .

[44]  B. K. Mishra,et al.  Fatigue crack growth in functionally graded material using homogenized XIGA , 2015 .

[45]  T. Anderson,et al.  Fracture mechanics - Fundamentals and applications , 2017 .

[46]  Stéphane Bordas,et al.  Linear elastic fracture simulation directly from CAD: 2D NURBS-based implementation and role of tip enrichment , 2017, International Journal of Fracture.

[47]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[48]  H. Nguyen-Xuan,et al.  An extended isogeometric thin shell analysis based on Kirchhoff-Love theory , 2015 .

[49]  Bijay K. Mishra,et al.  The numerical simulation of fatigue crack growth using extended finite element method , 2012 .

[50]  Ted Belytschko,et al.  An element-free Galerkin method for three-dimensional fracture mechanics , 1997 .

[51]  Indra Vir Singh,et al.  A simple and efficient XFEM approach for 3-D cracks simulations , 2013, International Journal of Fracture.

[52]  D. Chopp,et al.  Extended finite element method and fast marching method for three-dimensional fatigue crack propagation , 2003 .

[53]  B. K. Mishra,et al.  Fatigue crack growth analysis of an interfacial crack in heterogeneous materials using homogenized XIGA , 2016 .

[54]  Sharif Rahman,et al.  An interaction integral method for analysis of cracks in orthotropic functionally graded materials , 2003 .

[55]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[56]  S. Bordas,et al.  A well‐conditioned and optimally convergent XFEM for 3D linear elastic fracture , 2016 .

[57]  Ravi Prakash,et al.  Meshless analysis of unsteady-state heat transfer in semi-infinite solid with temperature-dependent thermal conductivity , 2006 .

[58]  B. Moran,et al.  An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions , 2002 .

[59]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[60]  Glaucio H. Paulino,et al.  Interaction integral procedures for 3-D curved cracks including surface tractions , 2005 .

[61]  Tinh Quoc Bui,et al.  Three-dimensional elastoplastic solids simulation by an effective IGA based on Bézier extraction of NURBS , 2019 .

[62]  Charles E. Augarde,et al.  Fracture modeling using meshless methods and level sets in 3D: Framework and modeling , 2012 .

[63]  T. Belytschko,et al.  Crack propagation by element-free Galerkin methods , 1995 .

[64]  B. K. Mishra,et al.  A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials , 2017 .

[65]  T. Rabczuk,et al.  XLME interpolants, a seamless bridge between XFEM and enriched meshless methods , 2014 .

[66]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[67]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[68]  Robert W. Zimmerman,et al.  A disk-shaped domain integral method for the computation of stress intensity factors using tetrahedral meshes , 2015 .

[69]  A. S. Shedbale,et al.  Ductile failure modeling and simulations using coupled FE–EFG approach , 2016, International Journal of Fracture.

[70]  John E. Dolbow,et al.  Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks , 1998 .

[71]  P. Kerfriden,et al.  Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth , 2017 .

[72]  Glaucio H. Paulino,et al.  Mixed-mode J-integral formulation and implementation using graded elements for fracture analysis of nonhomogeneous orthotropic materials , 2003 .

[73]  Indra Vir Singh,et al.  Numerical simulation of bi-material interfacial cracks using EFGM and XFEM , 2012 .

[74]  T. Rabczuk,et al.  T-spline based XIGA for fracture analysis of orthotropic media , 2015 .

[75]  Stéphane Bordas,et al.  Error-controlled adaptive extended finite element method for 3D linear elastic crack propagation , 2017 .

[76]  Michael C. H. Wu,et al.  Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials , 2015 .

[77]  Stéphane Bordas,et al.  Isogeometric locking-free plate element: A simple first order shear deformation theory for functionally graded plates , 2014 .

[78]  Timon Rabczuk,et al.  Dual-horizon peridynamics: A stable solution to varying horizons , 2017, 1703.05910.

[79]  I. Singh,et al.  Nonlinear Fatigue Crack Growth Simulations using J-integral Decomposition and XFEM , 2017 .

[80]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[81]  Timon Rabczuk,et al.  Damage and fracture algorithm using the screened Poisson equation and local remeshing , 2016 .

[82]  Timon Rabczuk,et al.  Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation , 2017 .

[83]  P. Kerfriden,et al.  Minimum energy multiple crack propagation. Part-II: Discrete solution with XFEM , 2017 .

[84]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[85]  Timon Rabczuk,et al.  Element-wise fracture algorithm based on rotation of edges , 2013 .

[86]  S. Bordas,et al.  A posteriori error estimation for extended finite elements by an extended global recovery , 2008 .

[87]  Xin Li,et al.  Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.

[88]  Indra Vir Singh,et al.  Analysis of cracked plate using higher-order shear deformation theory: Asymptotic crack-tip fields and XIGA implementation , 2018, Computer Methods in Applied Mechanics and Engineering.

[89]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[90]  S. Bordas,et al.  A simple error estimator for extended finite elements , 2007 .

[91]  Sohichi Hirose,et al.  Isogeometric analysis for unsaturated flow problems , 2014 .

[92]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[93]  T. Rabczuk,et al.  Extended isogeometric analysis for dynamic fracture in multiphase piezoelectric/piezomagnetic composites , 2016 .

[94]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[95]  S. Ahmad,et al.  Mixed mode crack growth in elasto-plastic-creeping solids using XFEM , 2018, Engineering Fracture Mechanics.