Increased expression of peptides from non-coding genes in cancer proteomics datasets suggests potential tumor neoantigens

[1]  Joshua M. Dempster,et al.  Noncanonical open reading frames encode functional proteins essential for cancer cell survival , 2021, Nature Biotechnology.

[2]  P. Gendron,et al.  Widespread and tissue-specific expression of endogenous retroelements in human somatic tissues , 2020, Genome Medicine.

[3]  M. Mann,et al.  Pervasive functional translation of noncanonical human open reading frames , 2020, Science.

[4]  Peter B. McGarvey,et al.  Proteogenomic Characterization of Endometrial Carcinoma , 2020, Cell.

[5]  Guo Ci Teo,et al.  Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma , 2019, Cell.

[6]  Katie M. Campbell,et al.  Best practices for bioinformatic characterization of neoantigens for clinical utility , 2019, Genome Medicine.

[7]  Z. Zeng,et al.  Neoantigen vaccine: an emerging tumor immunotherapy , 2019, Molecular Cancer.

[8]  Martin S. Taylor,et al.  LINE-1 ORF2p expression is nearly imperceptible in human cancers , 2019, Mobile DNA.

[9]  Qing‐Yu He,et al.  A hidden human proteome encoded by ‘non-coding’ genes , 2019, Nucleic acids research.

[10]  J. Boeke,et al.  LINE-1 derepression in senescent cells triggers interferon and inflammaging , 2018, Nature.

[11]  Astrid Gall,et al.  Ensembl 2019 , 2018, Nucleic Acids Res..

[12]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[13]  Lennart Martens,et al.  LNCipedia 5: towards a reference set of human long non-coding RNAs , 2018, Nucleic Acids Res..

[14]  Mark Gerstein,et al.  GENCODE reference annotation for the human and mouse genomes , 2018, Nucleic Acids Res..

[15]  P. Gendron,et al.  Noncoding regions are the main source of targetable tumor-specific antigens , 2018, Science Translational Medicine.

[16]  Mathias Wilhelm,et al.  A deep proteome and transcriptome abundance atlas of 29 healthy human tissues , 2018, bioRxiv.

[17]  M. Huss,et al.  Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow , 2018, Nature Communications.

[18]  Shun Liu,et al.  dreamBase: DNA modification, RNA regulation and protein binding of expressed pseudogenes in human health and disease , 2017, Nucleic Acids Res..

[19]  C. Perreault,et al.  Exploiting non-canonical translation to identify new targets for T cell-based cancer immunotherapy , 2018, Cellular and Molecular Life Sciences.

[20]  Xiaojing Wang,et al.  CanProVar 2.0: An Updated Database of Human Cancer Proteome Variation. , 2017, Journal of proteome research.

[21]  Lennart Martens,et al.  moFF: a robust and automated approach to extract peptide ion intensities , 2016, Nature Methods.

[22]  Allison P. Heath,et al.  Toward a Shared Vision for Cancer Genomic Data. , 2016, The New England journal of medicine.

[23]  Michael L. Gatza,et al.  Proteogenomics connects somatic mutations to signaling in breast cancer , 2016, Nature.

[24]  Yang I Li,et al.  Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling , 2015, bioRxiv.

[25]  P. Pandolfi,et al.  Pseudogenes in Human Cancer , 2015, Front. Med..

[26]  M. Mann,et al.  Absolute Proteome Analysis of Colorectal Mucosa, Adenoma, and Cancer Reveals Drastic Changes in Fatty Acid Metabolism and Plasma Membrane Transporters. , 2015, Journal of proteome research.

[27]  Subha Madhavan,et al.  The CPTAC Data Portal: A Resource for Cancer Proteomics Research. , 2015, Journal of proteome research.

[28]  Pavel A. Pevzner,et al.  Universal database search tool for proteomics , 2014, Nature Communications.

[29]  Nicholas T Ingolia,et al.  Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. , 2014, Cell reports.

[30]  B. Kuster,et al.  Mass-spectrometry-based draft of the human proteome , 2014, Nature.

[31]  Gary D Bader,et al.  A draft map of the human proteome , 2014, Nature.

[32]  R. Verhaak,et al.  The Pan-Cancer Analysis of Pseudogene Expression Reveals Biologically and Clinically Relevant Tumour Subtypes , 2014, Nature Communications.

[33]  Nikolaus Rajewsky,et al.  Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation , 2014, The EMBO journal.

[34]  Martin S. Taylor,et al.  Long interspersed element-1 protein expression is a hallmark of many human cancers. , 2014, The American journal of pathology.

[35]  M. Huss,et al.  HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics , 2013, Nature Methods.

[36]  Yusuf Tutar Pseudogenes , 2012, Comparative and functional genomics.

[37]  Martin S. Taylor,et al.  Affinity Proteomics Reveals Human Host Factors Implicated in Discrete Stages of LINE-1 Retrotransposition , 2013, Cell.

[38]  Gerben Menschaert,et al.  Combining in silico prediction and ribosome profiling in a genome-wide search for novel putatively coding sORFs , 2013, BMC Genomics.

[39]  Nicholas T. Ingolia,et al.  Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins , 2013, Cell.

[40]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[41]  J. Rinn,et al.  Peptidomic discovery of short open reading frame-encoded peptides in human cells , 2012, Nature chemical biology.

[42]  M. Omrani,et al.  shRNA mediated RHOXF1 silencing influences expression of BCL2 but not CASP8 in MCF-7 and MDA-MB-231 cell lines. , 2012, Asian Pacific journal of cancer prevention : APJCP.

[43]  S. Dhanasekaran,et al.  Expressed Pseudogenes in the Transcriptional Landscape of Human Cancers , 2012, Cell.

[44]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[45]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[46]  A. Iafrate,et al.  Aberrant Overexpression of Satellite Repeats in Pancreatic and Other Epithelial Cancers , 2011, Science.

[47]  P. Pandolfi,et al.  A coding-independent function of gene and pseudogene mRNAs regulates tumour biology , 2010, Nature.

[48]  Morten Nielsen,et al.  NetCTLpan: pan-specific MHC class I pathway epitope predictions , 2010, Immunogenetics.

[49]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[50]  A. Wood,et al.  A Screen for Retrotransposed Imprinted Genes Reveals an Association between X Chromosome Homology and Maternal Germ-Line Methylation , 2006, PLoS genetics.

[51]  Monilola A. Olayioye,et al.  The Phosphoprotein StarD10 Is Overexpressed in Breast Cancer and Cooperates with ErbB Receptors in Cellular Transformation , 2004, Cancer Research.

[52]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[53]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[54]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[55]  M. Karno,et al.  Renal cell carcinoma. , 1956, Bulletin. Tufts-New England Medical Center.