Polynomial-Time Isomorphism of 1-L-Complete Sets

Let C be any complexity class closed under log-lin reductions. We show that all sets complete for C under 1-L reductions are polynomial-time isomorphic to each other. We also generalize the result to reductions computed byfinite-crossingmachines. As a corollary, we show that all sets complete for C under two-way DFA reductions are polynomial-time isomorphic to each other.

[1]  Eric Allender Isomorphisms and 1-L Reductions , 1986, Computational Complexity Conference.

[2]  Stuart A. Kurtz,et al.  The isomorphism conjecture holds relative to an oracle , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[3]  Osamu Watanabe On One-One Polynomial Time Equivalence Relations , 1985, Theor. Comput. Sci..

[4]  Lane A. Hemachandra,et al.  Collapsing degrees via strong computation , 1993 .

[5]  Larry Joseph Stockmeyer,et al.  The complexity of decision problems in automata theory and logic , 1974 .

[6]  Lane A. Hemaspaandra,et al.  Collapsing Degrees via Strong Computation (Extended Abstract) , 1991, ICALP.

[7]  Manindra Agrawal On the Isomorphism Conjecture for Weak Reducibilities , 1996, J. Comput. Syst. Sci..

[8]  Stuart A. Kurtz,et al.  The Structure of Complete Degrees , 1990 .

[9]  Manindra Agrawal On the isomorphism problem for weak reducibilities , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[10]  Deborah Joseph,et al.  Some Remarks on Witness Functions for Nonpolynomial and Noncomplete Sets in NP , 1985, Theor. Comput. Sci..

[11]  Stuart A. Kurtz,et al.  The isomorphism conjecture fails relative to a random oracle , 1995, JACM.

[12]  Juris Hartmanis,et al.  One-Way Functions and the Nonisomorphism of NP-Complete Sets , 1991, Theor. Comput. Sci..

[13]  Steven Homer,et al.  Complete Problems and Strong Polynomial Reducibilities , 1992, SIAM J. Comput..

[14]  Neil Immerman,et al.  One-way log-tape reductions , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[15]  Neil Immerman,et al.  A First-Order Isomorphism Theorem , 1997, SIAM J. Comput..

[16]  Juris Hartmanis,et al.  On Log-Tape Isomorphisms of Complete Sets , 1978, Theor. Comput. Sci..

[17]  Stuart A. Kurtz,et al.  The ismorphism conjecture fails relative to a random oracle , 1989, STOC '89.

[18]  Eric Allender Isomorphisms and 1-L Reductions , 1988, J. Comput. Syst. Sci..

[19]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[20]  Neil Immerman,et al.  A First-Order Isomorphism Theorem , 1993, SIAM J. Comput..

[21]  L. Berman Polynomial reducibilities and complete sets. , 1977 .