A Subspace Cascadic Multigrid Method for Mortar Elements

Abstract A cascadic multigrid (CMG) method for elliptic problems with strong material jumps is proposed and analyzed. Non–matching grids at interfaces between subdomains are allowed and treated by mortar elements. The arising saddle point problems are solved by a subspace confined conjugate gradient method as smoother for the CMG. Details of algorithmic realization including adaptivity are elaborated. Numerical results illustrate the efficiency of the new subspace CMG algorithm.

[1]  YU. A. KUZNETSOV,et al.  Efficient iterative solvers for elliptic finite element problems on nonmatching grids , 1995 .

[2]  Peter Deuflhard,et al.  Domain decomposition with subdomain CCG for material jump elliptic problems , 1997 .

[3]  P. Deuflhard,et al.  Cascadic Multigrid Methods , 1996 .

[4]  Nonconforming finite elements and the Cascade iteration , 1999 .

[5]  Rob Stevenson,et al.  Nonconforming finite elements and the cascadic multi-grid method , 2002, Numerische Mathematik.

[6]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[7]  P. Deuflhard,et al.  The cascadic multigrid method for elliptic problems , 1996 .

[8]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[9]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[10]  Solution of the Laplace difference equation , 1969 .

[11]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[12]  Abdellatif Agouzal,et al.  Une méthode d'éléments finis hybrides en décomposition de domaines , 1995 .

[13]  Barbara I. Wohlmuth,et al.  Duality Estimates and Multigrid Analysis for Saddle Point Problems Arising from Mortar Discretizations , 2002, SIAM J. Sci. Comput..

[14]  Walter Zulehner,et al.  A Class of Smoothers for Saddle Point Problems , 2000, Computing.

[15]  V. V. Shaidurov,et al.  Some estimates of the rate of convergence for the cascadic conjugate-gradient method , 1996 .

[16]  P. Deuflhard Cascadic conjugate gradient methods for elliptic partial differential equations , 1993 .

[17]  Folkmar Bornemann,et al.  Classical and Cascadic Multigrid - A Methodological Comparison , 1996 .

[18]  Barbara Wohlmuth,et al.  Hierarchical A Posteriori Error Estimators for Mortar Finite Element Methods with Lagrange Multipliers , 1999 .

[19]  Barbara I. Wohlmuth,et al.  Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.

[20]  Wolfgang Dahmen,et al.  A cascadic multigrid algorithm for the Stokes equations , 1999, Numerische Mathematik.

[21]  Barbara I. Wohlmuth,et al.  A Multigrid Method Based on the Unconstrained Product Space for Mortar Finite Element Discretizations , 2001, SIAM J. Numer. Anal..

[22]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[23]  Wolfgang Dahmen,et al.  A Multigrid Algorithm for the Mortar Finite Element Method , 1999, SIAM J. Numer. Anal..

[24]  Olivier Pironneau,et al.  Substructuring preconditioners for the $Q_1$ mortar element method , 1995 .

[25]  Junping Wang,et al.  New convergence estimates for multilevel algorithms for finite-element approximations , 1994 .

[26]  D. Braess,et al.  An efficient smoother for the Stokes problem , 1997 .