GLOBAL REGULARITY CRITERION FOR THE 3 D NAVIER – STOKES EQUATIONS INVOLVING ONE ENTRY OF THE VELOCITY GRADIENT TENSOR By Chongsheng Cao and

In this paper we provide a sufficient condition, in terms of only one of the nine entries of the gradient tensor, i.e., the Jacobian matrix of the velocity vector field, for the global regularity of strong solutions to the three–dimensional Navier–Stokes equations in the whole space, as well as for the case of periodic boundary conditions. AMS Subject Classifications: 35Q35, 65M70

[1]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[2]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[3]  B. Nowakowski,et al.  Strong solutions to the Navier-Stokes equations on thin 3D domains , 2012, 1204.5988.

[4]  O. Ladyzhenskaya Sixth problem of the millennium: Navier-Stokes equations, existence and smoothness , 2003 .

[5]  Pierre Gilles Lemarié-Rieusset,et al.  Recent Developments in the Navier-Stokes Problem , 2002 .

[6]  Edriss S. Titi,et al.  Regularity Criteria for the Three-dimensional Navier-Stokes Equations , 2008 .

[7]  Peter Constantin,et al.  A few results and open problems regarding incompressible fluids , 1995 .

[8]  Yong Zhou,et al.  A New Regularity Criterion for the Navier-Stokes Equations in Terms of the Gradient of One Velocity Component , 2002 .

[9]  Yoshikazu Giga,et al.  Solutions in Lr of the Navier-Stokes initial value problem , 1985 .

[10]  L. Berselli On a regularity criterion for the solutions to the 3D Navier-Stokes equations , 2002, Differential and Integral Equations.

[11]  Hantaek Bae,et al.  On the Navier-Stokes equations , 2009 .

[12]  Yong Zhou,et al.  On regularity criteria in terms of pressure for the Navier-Stokes equations in ℝ³ , 2005 .

[13]  G. Prodi Un teorema di unicità per le equazioni di Navier-Stokes , 1959 .

[14]  R. Temam Some Developments on Navier-Stokes Equations in the Second Half of the 20th Century , 2000 .

[15]  Hiroko Morimoto,et al.  On the Navier-Stokes initial value problem , 1974 .

[16]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[17]  Hantaek Bae Navier-Stokes equations , 1992 .

[18]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[19]  G. Gustafson,et al.  Boundary Value Problems of Mathematical Physics , 1998 .

[20]  Yoshikazu Giga,et al.  Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .

[21]  Luigi C. Berselli,et al.  Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations , 2002 .

[22]  Dongho Chae,et al.  Remark on a regularity criterion in terms of pressure for the Navier-Stokes equations , 2011 .

[23]  V. Sverák,et al.  Navier-Stokes Equations with Lower Bounds on the Pressure , 2002 .

[24]  Л Искауриаза,et al.  $L_{3,\infty}$-решения уравнений Навье - Стокса и обратная единственность@@@$L_{3,\infty}$-solutions of the Navier - Stokes equations and backward uniqueness , 2003 .

[25]  Yong Zhou,et al.  On the regularity of the solutions of the Navier–Stokes equations via one velocity component , 2010 .

[26]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[27]  I. Kukavica Role of the Pressure for Validity of the Energy Equality for Solutions of the Navier–Stokes Equation , 2006 .

[28]  New Sufficient Conditions of Local Regularity for Solutions to the Navier–Stokes Equations , 2008 .

[29]  C. Doering,et al.  Applied analysis of the Navier-Stokes equations: Index , 1995 .

[30]  H. Sohr,et al.  The Navier-Stokes Equations: An Elementary Functional Analytic Approach , 2012 .

[31]  Claude Bardos,et al.  Mathematical Topics in Fluid Mechanics, Volume 1, Incompressible Models , 1998 .

[32]  Milan Pokorny On the result of He concerning the smoothness of solutions to the Navier-Stokes equations , 2003 .

[33]  Vladimir Sverak,et al.  L3,∞-solutions of the Navier-Stokes equations and backward uniqueness , 2003 .

[34]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[35]  H. Sohr A regularity class for the Navier-Stokes equations in Lorentz spaces , 2001 .

[36]  George R. Sell,et al.  Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions , 1993 .

[37]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[38]  Igor Kukavica,et al.  One component regularity for the Navier–Stokes equations , 2006 .

[39]  儀我 美一,et al.  Solutions for semilinear parabolic equations in L[p] and regularity of weak solutions of the Navier-Stokes system , 1985 .